Your browser doesn't support javascript.
loading
Biochar application can mitigate NH3 volatilization in acidic forest and upland soils but stimulates gaseous N losses in flooded acidic paddy soil.
Chu, Cheng; Dai, Shenyan; Meng, Lei; Cai, Zucong; Zhang, Jinbo; Müller, Christoph.
Afiliação
  • Chu C; School of Geography, Nanjing Normal University, Nanjing 210023, China.
  • Dai S; School of Geography, Nanjing Normal University, Nanjing 210023, China.
  • Meng L; College of Tropical Crops, Hainan University, Haikou 570228, China.
  • Cai Z; School of Geography, Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany.
  • Zhang J; School of Geography, Nanjing Normal University, Nanjing 210023, China; College of Tropical Crops, Hainan University, Haikou 570228, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China; Liebig Centre for Agroecology and Cli
  • Müller C; Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin, Ireland; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig
Sci Total Environ ; 864: 161099, 2023 Mar 15.
Article em En | MEDLINE | ID: mdl-36572316
ABSTRACT
Biochar (BC) has attracted attention for carbon sequestration, a strategy to mitigate climate change and alleviate soil acidification. Most meta-analyses have insufficiently elaborated the effects of BC on soil N transformation so the practical importance of BC could not be assessed. In this study, a 15N tracing study was conducted to investigate the effects of BC amendment on soil gross N transformations in acidic soils with different land-use types. The results show that the BC amendment accelerated the soil gross mineralization rate of labile organic N to NH4+ (MNlab) (3 %-128 %) which was associated with an increase in total nitrogen. BC mitigated NH3 volatilization (VNH3) (52 %-99 %) in upland and forest soils due to NH4+/NH3 adsorption, while it caused higher gaseous N losses (NH3 and N2O) in flooded paddy soils. An important function was the effect of BC addition on NH4+ oxidation (ONH4). While ONH4 increased (4 %-19 %) in upland soils, it was inhibited (34 %-71 %) in paddy soils and did not show a response in forest soils. Overall, the BC amendment reduced the potential risk of N loss (PRL), especially in forest soils (82 %-98 %). This study also shows that the BC effect on soil N cycling is land-use specific. The suitability of practices including BC hinges on the effects on gaseous N losses.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Solo Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Solo Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China
...