Your browser doesn't support javascript.
loading
A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy.
Deng, Wenxuan; Li, Bolun; Wang, Jiawei; Jiang, Wei; Yan, Xiting; Li, Ningshan; Vukmirovic, Milica; Kaminski, Naftali; Wang, Jing; Zhao, Hongyu.
Afiliação
  • Deng W; Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA.
  • Li B; Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA.
  • Wang J; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China.
  • Jiang W; Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA.
  • Yan X; Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA.
  • Li N; Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
  • Vukmirovic M; Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
  • Kaminski N; Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
  • Wang J; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., ON, Canada.
  • Zhao H; Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
Brief Bioinform ; 24(1)2023 01 19.
Article em En | MEDLINE | ID: mdl-36631398
Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices from cell lines, rapidly accumulating single-cell RNA-sequencing (scRNA-seq) data provide a richer and less biased resource. However, deriving cell type signature from scRNA-seq data is challenging due to high biological and technical noises. In this article, we introduce a novel Bayesian framework, tranSig, to improve signature matrix inference from scRNA-seq by leveraging shared cell type-specific expression patterns across different tissues and studies. Our simulations show that tranSig is robust to the number of signature genes and tissues specified in the model. Applications of tranSig to bulk RNA sequencing data from peripheral blood, bronchoalveolar lavage and aorta demonstrate its accuracy and power to characterize biological heterogeneity across groups. In summary, tranSig offers an accurate and robust approach to defining gene expression signatures of different cell types, facilitating improved in silico cell type deconvolutions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Perfilação da Expressão Gênica / Análise de Célula Única Tipo de estudo: Prognostic_studies Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Perfilação da Expressão Gênica / Análise de Célula Única Tipo de estudo: Prognostic_studies Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos
...