Your browser doesn't support javascript.
loading
Interactions across emotional, cognitive and subcortical motor networks underlying freezing of gait.
Togo, Hiroki; Nakamura, Tatsuhiro; Wakasugi, Noritaka; Takahashi, Yuji; Hanakawa, Takashi.
Afiliação
  • Togo H; Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi
  • Nakamura T; Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi
  • Wakasugi N; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan.
  • Takahashi Y; Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan.
  • Hanakawa T; Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi
Neuroimage Clin ; 37: 103342, 2023.
Article em En | MEDLINE | ID: mdl-36739790
ABSTRACT
Freezing of gait (FOG) is a gait disorder affecting patients with Parkinson's disease (PD) and related disorders. The pathophysiology of FOG is unclear because of its phenomenological complexity involving motor, cognitive, and emotional aspects of behavior. Here we used resting-state functional MRI to retrieve functional connectivity (FC) correlated with the New FOG questionnaire (NFOGQ) reflecting severity of FOG in 67 patients with PD. NFOGQ scores were correlated with FCs in the extended basal ganglia network (BGN) involving the striatum and amygdala, and in the extra-cerebellum network (CBLN) involving the frontoparietal network (FPN). These FCs represented interactions across the emotional (amygdala), subcortical motor (BGN and CBLN), and cognitive networks (FPN). Using these FCs as features, we constructed statistical models that explained 40% of the inter-individual variances of FOG severity and that discriminated between PD patients with and without FOG. The amygdala, which connects to the subcortical motor (BGN and CBLN) and cognitive (FPN) networks, may have a pivotal role in interactions across the emotional, cognitive, and subcortical motor networks. Future refinement of the machine learning-based classifier using FCs may clarify the complex pathophysiology of FOG further and help diagnose and evaluate FOG in clinical settings.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Transtornos Neurológicos da Marcha Tipo de estudo: Etiology_studies / Prognostic_studies / Qualitative_research / Risk_factors_studies Limite: Humans Idioma: En Revista: Neuroimage Clin Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Transtornos Neurológicos da Marcha Tipo de estudo: Etiology_studies / Prognostic_studies / Qualitative_research / Risk_factors_studies Limite: Humans Idioma: En Revista: Neuroimage Clin Ano de publicação: 2023 Tipo de documento: Article
...