Your browser doesn't support javascript.
loading
Vitamin C down-regulates the H3K9me3-dependent heterochromatin in buffalo fibroblasts via PI3K/PDK1/SGK1/KDM4A signal axis.
Wang, Jinling; Wang, Lei; Wang, Zhiqiang; Lv, Meiyun; Fu, Jiayuan; Zhang, Yunchuan; Qiu, Peng; Shi, Deshun; Luo, Chan.
Afiliação
  • Wang J; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling R
  • Wang L; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling R
  • Wang Z; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Z
  • Lv M; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling R
  • Fu J; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling R
  • Zhang Y; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling R
  • Qiu P; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling R
  • Shi D; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling R
  • Luo C; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, 75 Xiuling Road, Nanning, 530005, China; College of Animal Science and Technology, Guangxi University, 75 Xiuling R
Theriogenology ; 200: 114-124, 2023 Apr 01.
Article em En | MEDLINE | ID: mdl-36805248
ABSTRACT
The success of reprogramming is dependent on the reprogramming factors enriched in the cytoplasm of recipient oocytes and the potential of donor nucleus to be reprogrammed. Histone 3 lysine 9 trimethylation (H3K9me3) was identified as a major epigenetic barrier impeding complete reprogramming. Treating donor cell with vitamin C (Vc) can enhance the developmental potential of cloned embryos, but the underlying mechanisms still need to be elucidated. In this study, we found that 20µg/mL Vc could promote proliferation and inhibit apoptosis of BFFs, as well as down-regulate the H3K9me3-dependent heterochromatin and increase chromatin accessibility. Inhibited the expression of KDM4A resulted in increasing apoptosis rate and the H3K9me3-dependent heterochromatin, which can be restored by Vc. Moreover, Vc up-regulated the expression of KDM4A through PI3K/PDK1/SGK1 pathway. Inhibiting any factor in the signal axis of this PI3K pathway not only suppressed the activity of KDM4A but also substantially increased the level of H3K9me3 modification and the expression of the HP1α protein. Finally, Vc can rescue those negative effects induced by the blocking the PI3K/PDK1/SGK1 pathway. Collectively, Vc can down-regulate the H3K9me3-dependent heterochromatin in BFFs via PI3K/PDK1/SGK1/KDM4A signal axis, suggesting that Vc can turn the chromatin status of donor cells to be reprogrammed more easily.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Búfalos / Heterocromatina Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Theriogenology Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Búfalos / Heterocromatina Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Theriogenology Ano de publicação: 2023 Tipo de documento: Article
...