Your browser doesn't support javascript.
loading
Tuning interfacial microstructure of alginate-based amphiphile by dynamic bonding for stabilizing Pickering emulsion.
Huang, Shuntian; Wang, Zhaojun; Zhou, Qichang; Yang, Shujuan; Huang, Riting; Mai, Keyang; Qin, Wenqi; Huang, Junhao; Yu, Gaobo; Feng, Yuhong; Li, Jiacheng.
Afiliação
  • Huang S; Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
  • Wang Z; Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
  • Zhou Q; Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
  • Yang S; Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
  • Huang R; Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
  • Mai K; Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
  • Qin W; Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
  • Huang J; Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China. Electronic address: junhao@hainanu.edu.cn.
  • Yu G; Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China. Electronic address: gaobo.yu@hainan.edu.cn.
  • Feng Y; Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China. Electronic address: fengyuhong@hainanu.edu.cn.
  • Li J; Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China. Electronic address: lijiacheng@hainanu.edu.cn.
Carbohydr Polym ; 310: 120720, 2023 Jun 15.
Article em En | MEDLINE | ID: mdl-36925246
ABSTRACT
Polysaccharide-based soft colloidal particles mediated by the dynamic bonding-engineered interfacial self-assembly can regulate the properties of oil-water interfacial films, availing the stability of emulsions under a wide pH range. The amphiphilic phenylboronic alginate soft colloidal particles (Alg-PBA) were designed to stabilize pH-responsive Pickering emulsions (PEs). Combining stability analysis with quartz crystal microbalance and dissipation monitoring (QCM-D), the microstructure and viscoelasticity of Alg-PBA at the oil-water interface were determined. The results showed that PEs stabilized by Alg-PBA due to a thicker and stronger viscoelastic interface film induced by BO bonds and hydrogen bonds. The structure-function relationship of the Alg-PBA emulsifier driven by dynamic bonds was further elaborated at multiple scales by laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Meanwhile, the microstructure of aerogels templated by emulsion could be tuned by adjusting dynamic bonds, which provides a new idea for polysaccharide soft material engineering.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Carbohydr Polym Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Carbohydr Polym Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China
...