Your browser doesn't support javascript.
loading
Uterine leiomyosarcomas harboring MAP2K4 gene amplification are sensitive in vivo to PLX8725, a novel MAP2K4 inhibitor.
McNamara, Blair; Harold, Justin; Manavella, Diego; Bellone, Stefania; Mutlu, Levent; Hartwich, Tobias Max Philipp; Zipponi, Margherita; Yang-Hartwich, Yang; Demirkiran, Cem; Verzosa, Miguel Skyler Z; Yang, Kevin; Choi, Jungmin; Dong, Weilai; Buza, Natalia; Hui, Pei; Altwerger, Gary; Huang, Gloria S; Andikyan, Vaagn; Clark, Mitchell; Ratner, Elena; Azodi, Masoud; Schwartz, Peter E; Burton, Elizabeth A; Inagaki, Hiroaki; Albers, Aaron; Zhang, Chao; Bollag, Gideon; Schlessinger, Joseph; Santin, Alessandro D.
Afiliação
  • McNamara B; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Harold J; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Manavella D; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Bellone S; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Mutlu L; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Hartwich TMP; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Zipponi M; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Yang-Hartwich Y; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Demirkiran C; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Verzosa MSZ; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Yang K; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Choi J; Department of Biomedical Sciences, Korea University College of Medicine, 02841 Seoul, Republic of Korea.
  • Dong W; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, United States of America.
  • Buza N; Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, United States of America.
  • Hui P; Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, United States of America.
  • Altwerger G; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Huang GS; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Andikyan V; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Clark M; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Ratner E; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Azodi M; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Schwartz PE; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America.
  • Burton EA; Plexxikon Inc., South San Francisco, CA 94080, United States of America.
  • Inagaki H; Plexxikon Inc., South San Francisco, CA 94080, United States of America.
  • Albers A; Plexxikon Inc., South San Francisco, CA 94080, United States of America.
  • Zhang C; Plexxikon Inc., South San Francisco, CA 94080, United States of America.
  • Bollag G; Plexxikon Inc., South San Francisco, CA 94080, United States of America.
  • Schlessinger J; Department of Pharmacology, Yale University School of Medicine, CT 06520, United States of America.
  • Santin AD; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, United States of America. Electronic address: alessandro.santin@yale.edu.
Gynecol Oncol ; 172: 65-71, 2023 05.
Article em En | MEDLINE | ID: mdl-36958197
ABSTRACT

INTRODUCTION:

Uterine leiomyosarcomas (uLMS) are rare, highly aggressive tumors. Up to 30% of uLMS may harbor gain of function (GOF) in the MAP2K4 gene, important for tumor cell proliferation, differentiation and metastasis. We investigated the in vivo activity of a novel MAP2K4 inhibitor, PLX8725, against uLMS harboring MAP2K4 gene-amplification.

METHODS:

Two fully characterized uLMS (i.e., LEY-11 and LEY-16) were grafted into female CB-17/SCID mice. Treatments with control vehicle or PLX8725 (50 mg/kg) were given via oral gavage daily on weekdays for up to 60 days. Tumor volume differences were calculated with two-way ANOVA. Pharmacokinetic (PK) and mechanistic studies of PLX8725 in uLMS PDX models were also performed.

RESULTS:

Both uLMS tumors evaluated demonstrated GOF in MAP2K4 (i.e., 3 CNV in both LEY-11 and LEY-16). Tumor growth inhibition was significantly greater in both PDX LEY-11 and PDX LEY-16 treated with PLX8725 when compared to controls (p < 0.001). Median overall survival was also significantly longer in both PDX LEY-11 (p = 0.0047) and PDX LEY-16 (p = 0.0058) treatment cohorts when compared to controls. PLX8725 oral treatment was well tolerated, and PK studies demonstrated that oral PLX8725 gives extended exposure in mice. Ex vivo tumor samples after PLX8725 exposure decreased phosphorylated-ATR, JNK and p38, and increased expression of apoptotic molecules on western blot.

CONCLUSION:

PLX8725 demonstrates promising in vivo activity against PDX models of uLMS harboring GOF alterations in the MAP2K4 gene with tolerable toxicity. Phase I trials of PLX8725 in advanced, recurrent, chemotherapy-resistant uLMS patients are warranted.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pélvicas / Neoplasias Uterinas / Leiomiossarcoma Tipo de estudo: Diagnostic_studies Limite: Animals / Female / Humans Idioma: En Revista: Gynecol Oncol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pélvicas / Neoplasias Uterinas / Leiomiossarcoma Tipo de estudo: Diagnostic_studies Limite: Animals / Female / Humans Idioma: En Revista: Gynecol Oncol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos
...