Your browser doesn't support javascript.
loading
A Bioinspired Ultra Flexible Artificial van der Waals 2D-MoS2 Channel/LiSiOx Solid Electrolyte Synapse Arrays via Laser-Lift Off Process for Wearable Adaptive Neuromorphic Computing.
Hwang, Yunjeong; Park, Byeongjin; Hwang, Seungkwon; Choi, Soo-Won; Kim, Han Seul; Kim, Ah Ra; Choi, Jin Woo; Yoon, Jongwon; Kwon, Jung-Dae; Kim, Yonghun.
Afiliação
  • Hwang Y; Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam, 51508, Republic of Korea.
  • Park B; Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam, 51508, Republic of Korea.
  • Hwang S; School of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63-beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
  • Choi SW; Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam, 51508, Republic of Korea.
  • Kim HS; School of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63-beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
  • Kim AR; Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam, 51508, Republic of Korea.
  • Choi JW; School of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63-beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
  • Yoon J; Department of Advanced Materials Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea.
  • Kwon JD; Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam, 51508, Republic of Korea.
  • Kim Y; Department of Data Information and Physics, Kongju National University, 56 Gongjudaehak-ro, Gongju, Chungcheongnam-do, 32588, Republic ofKorea.
Small Methods ; 7(7): e2201719, 2023 Jul.
Article em En | MEDLINE | ID: mdl-36960927
Wearable electronic devices with next-generation biocompatible, mechanical, ultraflexible, and portable sensors are a fast-growing technology. Hardware systems enabling artificial neural networks while consuming low power and processing massive in situ personal data are essential for adaptive wearable neuromorphic edging computing. Herein, the development of an ultraflexible artificial-synaptic array device with concrete-mechanical cyclic endurance consisting of a novel heterostructure with an all-solid-state 2D MoS2 channel and LiSiOx (lithium silicate) is demonstrated. Enabled by the sequential fabrication process of all layers, by excluding the transfer process, artificial van der Waals devices combined with the 2D-MoS2 channel and LiSiOx solid electrolyte exhibit excellent neuromorphic synaptic characteristics with a nonlinearity of 0.55 and asymmetry ratio of 0.22. Based on the excellent flexibility of colorless polyimide substrates and thin-layered structures, the fabricated flexible neuromorphic synaptic devices exhibit superior long-term potentiation and long-term depression cyclic endurance performance, even when bent over 700 times or on curved surfaces with a diameter of 10 mm. Thus, a high classification accuracy of 95% is achieved without any noticeable performance degradation in the Modified National Institute of Standards and Technology. These results are promising for the development of personalized wearable artificial neural systems in the future.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Methods Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Methods Ano de publicação: 2023 Tipo de documento: Article
...