Your browser doesn't support javascript.
loading
Effect of nicosulfuron on dynamic changes in the starch-sugar interconversion in sweet maize (Zea mays L.).
Wang, Jian; Yang, Qing; Han, Jinling; He, Zidian; Yang, Min; Wang, Xiuping; Lin, Xiaohu.
Afiliação
  • Wang J; College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China.
  • Yang Q; College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China.
  • Han J; College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China.
  • He Z; College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China.
  • Yang M; College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China.
  • Wang X; College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China.
  • Lin X; Analysis and Testing Center, Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China.
Environ Sci Pollut Res Int ; 30(21): 59606-59620, 2023 May.
Article em En | MEDLINE | ID: mdl-37010681
ABSTRACT
Starch is an important reserve of sugar, and starch-sugar conversion in plants plays an important role in the response of plants to various abiotic stresses. Nicosulfuron is a post-emergence herbicide commonly applied to maize fields. However, it is unclear how sucrose and starch in sweet corn are converted to accommodate nicosulfuron stress. Field and pot experiments were conducted to study the effects of nicosulfuron on the sugar metabolism enzymes, starch metabolism enzymes, non-enzyme substances, and expression of key enzyme genes in leaves and roots of sweet maize seedlings. Accordingly, this research compared the responses of the sister lines HK301 and HK320, which are nicosulfuron tolerant and sensitive, respectively. Under nicosulfuron stress, compared with HK301 seedlings, the accumulation of stem and root dry matter of HK320 seedlings was significantly reduced, resulting in a lower root-to-shoot ratio. Compared with HK320 seedlings, nicosulfuron stress significantly increased the sucrose, soluble sugar, and starch contents in HK301 leaves and roots. This may be related to the enhanced carbohydrate metabolism under nicosulfuron stress, including significant changes in sugar metabolism enzyme activity and the levels of SPS and SuSys expression. Further, under nicosulfuron stress, sucrose transporter genes (SUC 1, SUC 2, SWEET 13a, and SWEET 13b) in the leaves and roots of HK301 seedlings were significantly upregulated. Our results emphasize that changes in sugar distribution, metabolism, and transport can improve the adaptability of sweet maize to nicosulfuron stress.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Zea mays / Açúcares Idioma: En Revista: Environ Sci Pollut Res Int Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Zea mays / Açúcares Idioma: En Revista: Environ Sci Pollut Res Int Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China
...