Your browser doesn't support javascript.
loading
CUSS-Net: A Cascaded Unsupervised-Based Strategy and Supervised Network for Biomedical Image Diagnosis and Segmentation.
IEEE J Biomed Health Inform ; 27(5): 2444-2455, 2023 05.
Article em En | MEDLINE | ID: mdl-37022059
Biomedical image segmentation and classification are critical components in a computer-aided diagnosis system. However, various deep convolutional neural networks are trained by a single task, ignoring the potential contribution of mutually performing multiple tasks. In this paper, we propose a cascaded unsupervised-based strategy to boost the supervised CNN framework for automated white blood cell (WBC) and skin lesion segmentation and classification, called CUSS-Net. Our proposed CUSS-Net consists of an unsupervised-based strategy (US) module, an enhanced segmentation network named E-SegNet, and a mask-guided classification network called MG-ClsNet. On the one hand, the proposed US module produces coarse masks that provide a prior localization map for the proposed E-SegNet to enhance it in locating and segmenting a target object accurately. On the other hand, the enhanced coarse masks predicted by the proposed E-SegNet are then fed into the proposed MG-ClsNet for accurate classification. Moreover, a novel cascaded dense inception module is presented to capture more high-level information. Meanwhile, we adopt a hybrid loss by combining a dice loss and a cross-entropy loss to alleviate the imbalance training problem. We evaluate our proposed CUSS-Net on three public medical image datasets. Experiments show that our proposed CUSS-Net outperforms representative state-of-the-art approaches.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dermatopatias / Processamento de Imagem Assistida por Computador Tipo de estudo: Clinical_trials / Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: IEEE J Biomed Health Inform Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dermatopatias / Processamento de Imagem Assistida por Computador Tipo de estudo: Clinical_trials / Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: IEEE J Biomed Health Inform Ano de publicação: 2023 Tipo de documento: Article
...