Newton-Raphson Meets Sparsity: Sparse Learning Via a Novel Penalty and a Fast Solver.
IEEE Trans Neural Netw Learn Syst
; PP2023 Mar 09.
Article
em En
| MEDLINE
| ID: mdl-37028319
In machine learning and statistics, the penalized regression methods are the main tools for variable selection (or feature selection) in high-dimensional sparse data analysis. Due to the nonsmoothness of the associated thresholding operators of commonly used penalties such as the least absolute shrinkage and selection operator (LASSO), the smoothly clipped absolute deviation (SCAD), and the minimax concave penalty (MCP), the classical Newton-Raphson algorithm cannot be used. In this article, we propose a cubic Hermite interpolation penalty (CHIP) with a smoothing thresholding operator. Theoretically, we establish the nonasymptotic estimation error bounds for the global minimizer of the CHIP penalized high-dimensional linear regression. Moreover, we show that the estimated support coincides with the target support with a high probability. We derive the Karush-Kuhn-Tucker (KKT) condition for the CHIP penalized estimator and then develop a support detection-based Newton-Raphson (SDNR) algorithm to solve it. Simulation studies demonstrate that the proposed method performs well in a wide range of finite sample situations. We also illustrate the application of our method with a real data example.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
IEEE Trans Neural Netw Learn Syst
Ano de publicação:
2023
Tipo de documento:
Article