Your browser doesn't support javascript.
loading
Electron Transport in Organic Photovoltaic Acceptor Materials: Improving the Carrier Mobilities by Intramolecular and Intermolecular Modulations.
Han, Guangchao; Zhang, Yaogang; Zheng, Wenyu; Yi, Yuanping.
Afiliação
  • Han G; Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
  • Zhang Y; Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
  • Zheng W; University of Chinese Academy Sciences, Beijing 100049, China.
  • Yi Y; Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
J Phys Chem Lett ; 14(19): 4497-4503, 2023 May 18.
Article em En | MEDLINE | ID: mdl-37156008
High carrier mobility is beneficial to increase the active-layer thickness while maintaining a high fill factor, which is crucial to further improve the light harvesting and organic photovoltaic efficiency. The aim of this Perspective is to elucidate the electron transport mechanisms in prototypical non-fullerene (NF) acceptors through our recent theoretical studies. The electron transport in A-D-A small-molecule acceptors (SMAs), e.g., ITIC and Y6, is mainly determined by end-group π-π stacking. Relative to ITIC, the angular backbone along with more flexible side chains leads to Y6 having a closer stacking and enhanced intermolecular electronic connectivity. For polymerized rylene diimide acceptors, to achieve high electron mobilities, they need to simultaneously increase intramolecular and intermolecular connectivity. Finally, finely tuning the π-bridge modes to enhance intramolecular superexchange coupling is essential to develop novel polymerized A-D-A SMAs.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Chem Lett Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Chem Lett Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China
...