Your browser doesn't support javascript.
loading
Secur-e-Health Project: Towards Federated Learning for Smart Pediatric Care.
Rb-Silva, Rita; Ribeiro, Xavier; Almeida, Francisca; Ameijeiras-Rodriguez, Carolina; Souza, Julio; Conceição, Luis; Taveira-Gomes, Tiago; Marreiros, Goreti; Freitas, Alberto.
Afiliação
  • Rb-Silva R; Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Porto, Portugal.
  • Ribeiro X; GECAD - Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, LASI - Intelligent Systems Associate Laboratory, Institute of Engineering - Polytechnic of Porto, Porto, Portugal.
  • Almeida F; MTG Research and Development Lab, Porto, Portugal.
  • Ameijeiras-Rodriguez C; GECAD - Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, LASI - Intelligent Systems Associate Laboratory, Institute of Engineering - Polytechnic of Porto, Porto, Portugal.
  • Souza J; MTG Research and Development Lab, Porto, Portugal.
  • Conceição L; Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Porto, Portugal.
  • Taveira-Gomes T; Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Porto, Portugal.
  • Marreiros G; CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal.
  • Freitas A; GECAD - Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, LASI - Intelligent Systems Associate Laboratory, Institute of Engineering - Polytechnic of Porto, Porto, Portugal.
Stud Health Technol Inform ; 302: 516-520, 2023 May 18.
Article em En | MEDLINE | ID: mdl-37203739
The application of machine learning (ML) algorithms to electronic health records (EHR) data allows the achievement of data-driven insights on various clinical problems and the development of clinical decision support (CDS) systems to improve patient care. However, data governance and privacy barriers hinder the use of data from multiple sources, especially in the medical field due to the sensitivity of data. Federated learning (FL) is an attractive data privacy-preserving solution in this context by enabling the training of ML models with data from multiple sources without any data sharing, using distributed remotely hosted datasets. The Secur-e-Health project aims at developing a solution in terms of CDS tools encompassing FL predictive models and recommendation systems. This tool may be especially useful in Pediatrics due to the increasing demands on Pediatric services, and the current scarcity of ML applications in this field compared to adult care. Herein we provide a description of the technical solution proposed in this project for three specific pediatric clinical problems: childhood obesity management, pilonidal cyst post-surgical care and retinography imaging analysis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 1_ASSA2030 Problema de saúde: 1_sistemas_informacao_saude Assunto principal: Telemedicina / Sistemas de Apoio a Decisões Clínicas / Obesidade Infantil Tipo de estudo: Guideline / Prognostic_studies Limite: Adult / Child / Humans Idioma: En Revista: Stud Health Technol Inform Assunto da revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Portugal

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 1_ASSA2030 Problema de saúde: 1_sistemas_informacao_saude Assunto principal: Telemedicina / Sistemas de Apoio a Decisões Clínicas / Obesidade Infantil Tipo de estudo: Guideline / Prognostic_studies Limite: Adult / Child / Humans Idioma: En Revista: Stud Health Technol Inform Assunto da revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Portugal
...