Your browser doesn't support javascript.
loading
Age estimation from iliac auricular surface using Bayesian inference and principal component analysis: a CT-based study in an Indian population.
Warrier, Varsha; Shedge, Rutwik; Garg, Pawan Kumar; Dixit, Shilpi Gupta; Krishan, Kewal; Kanchan, Tanuj.
Afiliação
  • Warrier V; Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, 342005, India. warrier_varsha@yahoo.co.in.
  • Shedge R; School of Forensic Sciences, National Forensic Sciences University, Agartala, Tripura, 799001, India.
  • Garg PK; Department of Diagnostic and Interventional Radiology, All India Institute of Medical Sciences, Jodhpur, 342005, India.
  • Dixit SG; Department of Anatomy, All India Institute of Medical Sciences, Jodhpur, 342005, India.
  • Krishan K; Department of Anthropology (UGC Centre of Advanced Study), Panjab University, Chandigarh, 160014, India.
  • Kanchan T; Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, 342005, India.
Article em En | MEDLINE | ID: mdl-37277663
ABSTRACT
Age estimation constitutes one of the pillars of human identification. The auricular surface of the ilium presents as a durable and robust structure within the human skeletal framework, capable of enabling accurate age estimation in older adults. Amongst different documented auricular age estimation methods, the Buckberry-Chamberlain method offers greater objectivity through its component-based approach. The present study aimed to test the applicability of the Buckberry-Chamberlain method in an Indian population through a CT-based examination of the auricular surface. CT scans of 435 participants undergoing CT examinations following the advice of their treating physicians were scrutinized for different age-related auricular changes. Three of the five morphological features described by Buckberry-Chamberlain could be appreciated on CT scans, and thus further statistical analysis was restricted to these features. Transition analysis coupled with Bayesian inference was undertaken individually for each feature to enable age estimation from individual features, while circumventing age mimicry. A Bayesian analysis of individual features yielded highest accuracy percentages (98.64%) and error rates (12.99 years) with macroporosity. Transverse organization and apical changes yielded accuracy percentages of 91.67% and 94.84%, respectively, with inaccuracy computations of 10.18 years and 11.74 years, respectively. Summary age models, i.e. multivariate age estimation models, derived by taking this differential accuracy and inaccuracy into consideration yielded a reduced inaccuracy value of 8.52 years. While Bayesian analysis undertaken within the present study enables age estimation from individual morphological features, summary age models appropriately weigh all appreciable features to yield more accurate and reliable estimates of age.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Forensic Sci Med Pathol Assunto da revista: JURISPRUDENCIA / MEDICINA / PATOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Forensic Sci Med Pathol Assunto da revista: JURISPRUDENCIA / MEDICINA / PATOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Índia
...