Your browser doesn't support javascript.
loading
Ultra-fast and accurate electron ionization mass spectrum matching for compound identification with million-scale in-silico library.
Yang, Qiong; Ji, Hongchao; Xu, Zhenbo; Li, Yiming; Wang, Pingshan; Sun, Jinyu; Fan, Xiaqiong; Zhang, Hailiang; Lu, Hongmei; Zhang, Zhimin.
Afiliação
  • Yang Q; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR, China.
  • Ji H; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, PR, China.
  • Xu Z; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR, China.
  • Li Y; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR, China.
  • Wang P; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR, China.
  • Sun J; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR, China.
  • Fan X; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR, China.
  • Zhang H; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR, China.
  • Lu H; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR, China. hongmeilu@csu.edu.cn.
  • Zhang Z; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR, China. zmzhang@csu.edu.cn.
Nat Commun ; 14(1): 3722, 2023 Jun 22.
Article em En | MEDLINE | ID: mdl-37349295
ABSTRACT
Spectrum matching is the most common method for compound identification in mass spectrometry (MS). However, some challenges limit its efficiency, including the coverage of spectral libraries, the accuracy, and the speed of matching. In this study, a million-scale in-silico EI-MS library is established. Furthermore, an ultra-fast and accurate spectrum matching (FastEI) method is proposed to substantially improve accuracy using Word2vec spectral embedding and boost the speed using the hierarchical navigable small-world graph (HNSW). It achieves 80.4% recall@10 accuracy (88.3% with 5 Da mass filter) with a speedup of two orders of magnitude compared with the weighted cosine similarity method (WCS). When FastEI is applied to identify the molecules beyond NIST 2017 library, it achieves 50% recall@1 accuracy. FastEI is packaged as a standalone and user-friendly software for common users with limited computational backgrounds. Overall, FastEI combined with a million-scale in-silico library facilitates compound identification as an accurate and ultra-fast tool.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Elétrons Tipo de estudo: Diagnostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Elétrons Tipo de estudo: Diagnostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China
...