Your browser doesn't support javascript.
loading
Highly Enhancing CO2 Photoreduction by Metallization of an Imidazole-linked Robust Covalent Organic Framework.
Luan, Tian-Xiang; Wang, Jia-Rui; Li, Keyu; Li, Hailian; Nan, Fuchun; Yu, William W; Li, Pei-Zhou.
Afiliação
  • Luan TX; Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'
  • Wang JR; Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'
  • Li K; Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'
  • Li H; Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'
  • Nan F; Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'
  • Yu WW; Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'
  • Li PZ; Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'
Small ; 19(44): e2303324, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37391273
Converting CO2 into value-added chemicals to solve the issues caused by carbon emission is promising but challenging. Herein, by embedding metal ions (Co2+ , Ni2+ , Cu2+ , and Zn2+ ) into an imidazole-linked robust photosensitive covalent organic framework (PyPor-COF), effective photocatalysts for CO2 conversion are rationally designed and constructed. Characterizations display that all of the metallized PyPor-COFs (M-PyPor-COFs) display remarkably high enhancement in their photochemical properties. Photocatalysis reactions reveal that the Co-metallized PyPor-COF (Co-PyPor-COF) achieves a CO production rate as high as up to 9645 µmol g-1 h-1 with a selectivity of 96.7% under light irradiation, which is more than 45 times higher than that of the metal-free PyPor-COF, while Ni-metallized PyPor-COF (Ni-PyPor-COF) can further tandem catalyze the generated CO to CH4 with a production rate of 463.2 µmol g-1 h-1 . Experimental analyses and theory calculations reveal that their remarkable performance enhancement on CO2 photoreduction should be attributed to the incorporated metal sites in the COF skeleton, which promotes the adsorption and activation of CO2 and the desorption of generated CO and even reduces the reaction energy barrier for the formation of different intermediates. This work demonstrates that by metallizing photoactive COFs, effective photocatalysts for CO2 conversion can be achieved.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article
...