Regulating the Spin State of Metal and Metal Carbide Heterojunctions for Efficient Oxygen Evolution.
ACS Appl Mater Interfaces
; 15(30): 36423-36433, 2023 Aug 02.
Article
em En
| MEDLINE
| ID: mdl-37466139
Developing high-performance electrocatalysts for oxygen evolution reaction (OER) is of importance for improving the overall efficiency of water splitting. Herein, the CoFe/(CoxFe1-x)3Mo3C heterojunction is purposely designed as an OER catalyst, which displays a low overpotential of 293 mV for affording a current density of 10 mA cm-2 and a small Tafel slope of 48 mV/dec. Various characterization results demonstrate that the significant work-function difference between CoFe and (CoxFe1-x)3Mo3C can induce interfacial charge redistribution, which results in the formation of Co and Fe sites with a high-spin state, thus stimulating the surface phase reconstruction of CoFe/(CoxFe1-x)3Mo3C to corresponding active oxyhydroxide. Meanwhile, the electrochemical leaching of Mo ions from the initial structure can contribute to the formation of defective sites, further benefiting OH- adsorption and surface oxidation. Moreover, the remaining CoFe can accelerate electron migration during the electrocatalytic process. This study presents new insights into constructing efficient OER electrocatalysts with an optimized spin-state configuration via interfacial engineering.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Assunto da revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China