Your browser doesn't support javascript.
loading
Efficiency, mechanism, influencing factors, and integrated technology of biodegradation for aromatic compounds by microalgae: A review.
Li, Haiping; Meng, Fanping.
Afiliação
  • Li H; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
  • Meng F; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China. Electronic address: mengfanping@ouc.edu.cn.
Environ Pollut ; 335: 122248, 2023 Oct 15.
Article em En | MEDLINE | ID: mdl-37490964
ABSTRACT
Aromatic compounds have received widespread attention because of their threat to ecosystem and human health. However, traditional physical and chemical methods are criticized due to secondary pollution and high cost. As a result of ecological security and the ability of carbon sequestration, biodegradation approach based on microalgae has emerged as a promising alternative treatment for aromatic pollutants. In light of the current researches, the degradation efficiency of BTEX (benzene, toluene, ethylbenzene, and xylene), polycyclic aromatic hydrocarbons (PAHs), and phenolic compounds by microalgae was reviewed in this study. We summarized the degradation pathways and metabolites of p-xylene, benzo [a]pyrene, fluorene, phenol, bisphenol A, and nonylphenol by microalgae. The influence factors on the degradation of aromatic compounds by microalgae were also discussed. The integrated technologies based on microalgae for degradation of aromatic compounds were reviewed. Finally, this study discussed the limitations and future research needs of the degradation of these compounds by microalgae.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrocarbonetos Policíclicos Aromáticos / Microalgas Limite: Humans Idioma: En Revista: Environ Pollut Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrocarbonetos Policíclicos Aromáticos / Microalgas Limite: Humans Idioma: En Revista: Environ Pollut Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China
...