Your browser doesn't support javascript.
loading
Balancing Interfacial Reactions through Regulating p-Band Centers by an Indium Tin Oxide Protective Layer for Stable Zn Metal Anodes.
Meng, Yahan; Wang, Mingming; Xu, Jingwen; Xu, Kui; Zhang, Kai; Xie, Zehui; Zhu, Zhengxin; Wang, Weiping; Gao, Pengfei; Li, Xiangyang; Chen, Wei.
Afiliação
  • Meng Y; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Wang M; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Xu J; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Xu K; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Zhang K; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Xie Z; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Zhu Z; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Wang W; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Gao P; Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, Jiangsu 214443, China.
  • Li X; Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China.
  • Chen W; Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
Angew Chem Int Ed Engl ; 62(40): e202308454, 2023 Oct 02.
Article em En | MEDLINE | ID: mdl-37563746
ABSTRACT
Metallic zinc (Zn) is considered as one of the most attractive anode materials for the post-lithium metal battery systems owing to the high theoretical capacity, low cost, and intrinsic safety. However, the Zn dendrites and parasitic side reaction impede its application. Herein, we propose a new principle of regulating p-band center of metal oxide protective coating to balance Zn adsorption energy and migration energy barrier for effective Zn deposition and stripping. Experimental results and theoretical calculations indicate that benefiting from the uniform zincophilic nucleation sites and fast Zn transport on indium tin oxide (ITO), highly stable and reversible Zn anode can be achieved. As a result, the I-Zn symmetrical cell achieves highly reversible Zn deposition/stripping with an extremely low overpotential of 9 mV and a superior lifespan over 4000 h. The Cu/I-Zn asymmetrical cell exhibits a long lifetime of over 4000 cycles with high average coulombic efficiency of 99.9 %. Furthermore, the assembled I-Zn/AC full cell exhibits an excellent lifetime for 70000 cycles with nearly 100 % capacity retention. This work provides a general strategy and new insight for the construction of efficient Zn anode protection layer.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China
...