Your browser doesn't support javascript.
loading
Pregnancy-induced physiological hypertrophic preconditioning attenuates pathological myocardial hypertrophy by activation of FoxO3a.
Xie, Jiahe; Zheng, Cankun; Shen, Mengjia; Lu, Weiling; Li, Mingjue; He, Mingyuan; Chen, Lu; Ma, Siyuan; Zhu, Yingqi; Lin, Hairuo; Xiu, Jiancheng; Liao, Wangjun; Bin, Jianping; Liao, Yulin.
Afiliação
  • Xie J; Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
  • Zheng C; Department of Cardiology, First Affiliated Hospital, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch Center of National Geriatric Disease Clinical Medical Research Center, Gannan Medical University, Ganzhou, 341000, Chi
  • Shen M; Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
  • Lu W; Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
  • Li M; Department of Cardiology, First Affiliated Hospital, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch Center of National Geriatric Disease Clinical Medical Research Center, Gannan Medical University, Ganzhou, 341000, Chi
  • He M; Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
  • Chen L; Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
  • Ma S; Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
  • Zhu Y; Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
  • Lin H; Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
  • Xiu J; Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
  • Liao W; Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
  • Bin J; Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
  • Liao Y; Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
Cell Mol Life Sci ; 80(9): 267, 2023 Aug 26.
Article em En | MEDLINE | ID: mdl-37626241
ABSTRACT
Previous studies show a woman's pregnancy is correlated with post-reproductive longevity, and nulliparity is associated with higher risk of incident heart failure, suggesting pregnancy likely exerts a cardioprotection. We previously reported a cardioprotective phenomenon termed myocardial hypertrophic preconditioning, but it is unknown whether pregnancy-induced physiological hypertrophic preconditioning (PHP) can also protect the heart against subsequent pathological hypertrophic stress. We aimed to clarify the phenomenon of PHP and its mechanisms. The pluripara mice whose pregnancy-induced physiological hypertrophy regressed and the nulliparous mice underwent angiotensin II (Ang II) infusion or transverse aortic constriction (TAC). Echocardiography, invasive left ventricular hemodynamic measurement and histological analysis were used to evaluate cardiac remodeling and function. Silencing or overexpression of Foxo3 by adeno-associated virus was used to investigate the role of FoxO3a involved in the antihypertrophic effect. Compared with nulliparous mice, pathological cardiac hypertrophy induced by Ang II infusion, or TAC was significantly attenuated and heart failure induced by TAC was markedly improved in mice with PHP. Activation of FoxO3a was significantly enhanced in the hearts of postpartum mice. FoxO3a inhibited myocardial hypertrophy by suppressing signaling pathway of phosphorylated glycogen synthase kinase-3ß (p-GSK3ß)/ß-catenin/Cyclin D1. Silencing or overexpression of Foxo3 attenuated or enhanced the anti-hypertrophic effect of PHP in mice with pathological stimulation. Our findings demonstrate that PHP confers resistance to subsequent hypertrophic stress and slows progression to heart failure through activation of FoxO3a/GSK3ß pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estenose da Valva Aórtica / Hormônios Peptídicos / Insuficiência Cardíaca Limite: Animals / Pregnancy Idioma: En Revista: Cell Mol Life Sci Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estenose da Valva Aórtica / Hormônios Peptídicos / Insuficiência Cardíaca Limite: Animals / Pregnancy Idioma: En Revista: Cell Mol Life Sci Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China
...