Your browser doesn't support javascript.
loading
Differential cytotoxicity to human cells in vitro of tire wear particles emitted from typical road friction patterns: The dominant role of environmental persistent free radicals.
Li, Kun; Yu, Jianghua; Kong, Deyue; Chen, Xingyue; Peng, Yonghong; Wang, Liangliang.
Afiliação
  • Li K; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing,
  • Yu J; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing,
  • Kong D; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing,
  • Chen X; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing,
  • Peng Y; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing,
  • Wang L; School of Applied Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
Chemosphere ; 343: 140256, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37742763
ABSTRACT
Tire wear particles (TWPs) have been recognized as one of the major sources of microplastics (MPs), however, effects of initial properties and photochemical behavior of TWPs on cytotoxicity to human cells in vitro have not been reported. Therefore, here, three TWPs generated from typical wear of tires and pavements (i.e., rolling friction (R-TWPs) and sliding friction (S-TWPs)) and cryogenically milled tire tread (C-TWPs), respectively, and their photoaging counterparts were used to study the reasons for their differential cytotoxicity to 16HBE cells in vitro. Results showed in addition to changes of surface structure and morphology, different preparation methods could also induce formation of different concentration levels of environmental persistent free radicals (EPFRs) (from 1.24 to 3.06 × 1017 spins/g with g-factors ranging 2.00307-2.00310) on surfaces of TWPs, which contained 7.3%-65.8% of reactive EPFRs (r-EPFRs). Meanwhile, photoaging for 90 d could strengthen formation of EPFRs (from 4.03 to 4.61 × 1017 spins/g) with containing 74.7%-78.1% r-EPFRs on surfaces of TWPs and improve their g-factor indexes (ranging 2.00309-2.00313). At 100 µg mL-1 level, compared to C-TWPs, both R-TWPs and S-TWPs (whether photoaging or not) carried higher intensity EPFRs could significantly inhibit 16HBE cells proliferation activity, cause more cells oxidative stress and induce more cell apoptosis/necrosis and secretion of inflammatory factor (P < 0.05). However, regardless of how TWPs were prepared, photoaged or not, exposure at a concentration of 1 µg mL-1 appeared to be non-acute cytotoxic. Correlation analysis suggested dominant toxicity of TWPs was attributed to the formation of r-EPFRs on their surfaces, which could promote accumulation of excess reactive oxygen species in cells and the massive deposition of intracellular particles. This study provides direct evidence of TWPs cytotoxicity, and underlining the need for a better understanding of the influences of initial properties and photochemical characteristics on risk assessment of TWPs released into the environment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Atmosféricos / Material Particulado Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Revista: Chemosphere Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Atmosféricos / Material Particulado Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Revista: Chemosphere Ano de publicação: 2023 Tipo de documento: Article
...