Your browser doesn't support javascript.
loading
Application of optimized LSTM in prediction of the cumulative confirmed cases of COVID-19.
He, M; Zhu, W W; Chen, H Z; Zhu, Hongbing.
Afiliação
  • He M; College of Electronics and Information Engineering, Beibu Gulf University, Qinzhou, China.
  • Zhu WW; College of Mechanical and Marine Engineering, Beibu Gulf University, Qinzhou, China.
  • Chen HZ; College of Mechanical and Marine Engineering, Beibu Gulf University, Qinzhou, China.
  • Zhu H; Advanced Science and Technology Research Institute, Beibu Gulf University, Qinzhou, China.
Article em En | MEDLINE | ID: mdl-37787059
This paper proposes an optimized Long Short-Term Memory (LSTM+) model for predicting cumulative confirmed cases of COVID-19 in Germany, the UK, Italy, and Japan. The LSTM+ model incorporates two key optimizations: (1) fine-adjustment of parameters and (2) a 're-prediction' process that utilizes the latest prediction results from the previous iteration. The performance of the LSTM+ model is evaluated and compared with that of Backpropagation (BP) and traditional LSTM models. The results demonstrate that the LSTM+ model significantly outperforms both BP and LSTM models, achieving a Mean Absolute Percentage Error (MAPE) of less than 0.6%. Additionally, two illustrative examples employing the LSTM+ model further validate its general applicability and practical performance for predicting cumulative confirmed COVID-19 cases.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Comput Methods Biomech Biomed Engin Assunto da revista: ENGENHARIA BIOMEDICA / FISIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Comput Methods Biomech Biomed Engin Assunto da revista: ENGENHARIA BIOMEDICA / FISIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China
...