Recovery of residual carbon from coal gasification fine slag by a combined gravity separation-flotation process.
J Environ Manage
; 348: 119351, 2023 Dec 15.
Article
em En
| MEDLINE
| ID: mdl-37862894
Recovering inner residual carbon is important for fully utilizing coal gasification fine slag (CGFS) resources. In this study, we adopted a combined gravity-separation and flotation process to efficiently recover residual carbon by considering the characteristics of the CGFS and optimizing the operating factors of the process. CGFS is principally a mixture of residual carbon and ash, with low-density particles containing more of the former. Accordingly, residual carbon is preliminarily enriched by gravity separation, in which gas velocity (vg) and water velocity (vw) significantly impact separation efficiency, followed by feed volume (m). The residual carbon in the initial concentrate was preliminarily enriched (i.e., loss on ignition (LOI): 55.90%; combustible recovery (Ro): 72.36%) under appropriate operating conditions (i.e., vw = 0.04 m/s, vg = 3 m/s, m = 150 g). Moreover, the quality of the flotation concentrate was most influenced by collector dosage (mc), followed by aeration rate (η), frother dosage (mf), stirring speed (w), and grinding time (t) during flotation of the primary concentrate. The flotation concentrate exhibited LOI and Ro values of 90.95% and 50.34%, respectively, under the optimal flotation conditions (i.e., mc = 20 kg/t, mf = 15 kg/t, w = 2600 rad/min, η = 200 L/h, t = 360 s); it has a high residual carbon content and is an ideal raw material for preparing fuels or carbon materials.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Carbono
/
Carvão Mineral
Idioma:
En
Revista:
J Environ Manage
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China