Your browser doesn't support javascript.
loading
HIF-1α Reduction by Lowering Intraocular Pressure Alleviated Retinal Neovascularization.
Yang, Ziqi; Ni, Biyan; Zhou, Tian; Huang, Zijing; Zhou, Hong; Zhou, Yang; Lin, Shiya; He, Chang; Liu, Xialin.
Afiliação
  • Yang Z; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
  • Ni B; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
  • Zhou T; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
  • Huang Z; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
  • Zhou H; Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China.
  • Zhou Y; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
  • Lin S; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
  • He C; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
  • Liu X; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
Biomolecules ; 13(10)2023 10 17.
Article em En | MEDLINE | ID: mdl-37892214
ABSTRACT
Hypoxia-induced retinal neovascularization is a leading cause of blindness worldwide. Oxygen-induced retinopathy (OIR) mouse, a well-established angiogenesis model, has been extensively used to evaluate the effect of anti-angiogenic agents through intravitreal injection. Here, we serendipitously found that the needles used for intravitreal injection caused an unexpected "anti-angiogenic" effect in the OIR mice. To evaluate the effects of various intravitreal puncture sizes on retinal neovascularization and explore the potential underlying mechanism, intravitreal punctures using 0.5 mm (25 G), 0.3 mm (30 G), or 0.21 mm (33 G) needles were performed in OIR mice. Compared with 0.3 mm and 0.21 mm puncture, the 0.5 mm puncture remarkably suppressed the formation of pathological angiogenesis, inhibited vascular leakage, and remodeled the retinal vasculature. Mechanistically, the 0.5 mm puncture induced a substantial reduction in intraocular pressure (IOP), leading to an improvement in oxygen partial pressure (pO2) and significant reduction in Hif1a expression, resulting in resolution of angiogenic and inflammatory responses. Furthermore, IOP-lowering drugs, Travatan or Azarga, also promoted the alleviation of hypoxia and exhibited a potent anti-angiogenesis efficacy. Our study revealed an acute and significant reduction in IOP caused by a large puncture, which could remarkably suppress HIF-1α-mediated retinal neovascularization, indicating that lowering IOP may be a promising therapeutic avenue for treating retinal neovascular diseases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças Retinianas / Neovascularização Retiniana Limite: Animals Idioma: En Revista: Biomolecules Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças Retinianas / Neovascularização Retiniana Limite: Animals Idioma: En Revista: Biomolecules Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China
...