Efficient Noncollinear Antiferromagnetic State Switching Induced by the Orbital Hall Effect in Chromium.
Nano Lett
; 23(22): 10274-10281, 2023 Nov 22.
Article
em En
| MEDLINE
| ID: mdl-37909311
Recently, orbital Hall current has attracted attention as an alternative method to switch the magnetization of ferromagnets. Here we present our findings on electrical switching of the antiferromagnetic state in Mn3Sn/Cr, where despite the much smaller spin Hall angle of Cr, the switching current density is comparable to heavy metal-based heterostructures. However, the inverse process, i.e., spin-to-charge conversion in Cr-based heterostructures, is much less efficient than the Pt-based equivalents, as manifested in the 1 order of magnitude smaller terahertz emission intensity and spin current-induced magnetoresistance. These results in combination with the slow decay of terahertz emission against Cr thickness (diffusion length of â¼11 nm) suggest that the observed magnetic switching can be attributed to orbital current generation in Cr, followed by efficient conversion to spin current. Our work demonstrates the potential of light metals like Cr as efficient orbital/spin current sources for antiferromagnetic spintronics.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Singapura