Eliciting calcium transients with UV nanosecond laser stimulation in adult patient-derived glioblastoma brain cancer cellsin vitro.
J Neural Eng
; 20(6)2023 12 11.
Article
em En
| MEDLINE
| ID: mdl-37988746
Objective.Glioblastoma (GBM) is the most common and lethal type of high-grade adult brain cancer. The World Health Organization have classed GBM as an incurable disease because standard treatments have yielded little improvement with life-expectancy being 6-15 months after diagnosis. Different approaches are now crucial to discover new knowledge about GBM communication/function in order to establish alternative therapies for such an aggressive adult brain cancer. Calcium (Ca2+) is a fundamental cell molecular messenger employed in GBM being involved in a wide dynamic range of cellular processes. Understanding how the movement of Ca2+behaves and modulates activity in GBM at the single-cell level is relatively unexplored but holds the potential to yield opportunities for new therapeutic strategies and approaches for cancer treatment.Approach.In this article we establish a spatially and temporally precise method for stimulating Ca2+transients in three patient-derived GBM cell-lines (FPW1, RN1, and RKI1) such that Ca2+communication can be studied from single-cell to larger network scales. We demonstrate that this is possible by administering a single optimized ultra-violet (UV) nanosecond laser pulse to trigger GBM Ca2+transients.Main results.We determine that 1.58µJµm-2is the optimal UV nanosecond laser pulse energy density necessary to elicit a single Ca2+transient in the GBM cell-lines whilst maintaining viability, functionality, the ability to be stimulated many times in an experiment, and to trigger further Ca2+communication in a larger network of GBM cells.Significance.Using adult patient-derived mesenchymal GBM brain cancer cell-lines, the most aggressive form of GBM cancer, this work is the first of its kind as it provides a new effective modality of which to stimulate GBM cells at the single-cell level in an accurate, repeatable, and reliable manner; and is a first step toward Ca2+communication in GBM brain cancer cells and their networks being more effectively studied.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Contexto em Saúde:
2_ODS3
Problema de saúde:
2_cobertura_universal
Assunto principal:
Neoplasias Encefálicas
/
Glioblastoma
Limite:
Humans
Idioma:
En
Revista:
J Neural Eng
Assunto da revista:
NEUROLOGIA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Nova Zelândia