Your browser doesn't support javascript.
loading
3D-DNA walking nanomachine based on catalytic hairpin assembly and copper nanoclusters for sensitive detection of hepatitis C virus.
Zheng, Laibao; Jin, Ming; Pan, Yajing; Zheng, Yan; Lou, Yongliang.
Afiliação
  • Zheng L; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Endocrinology, Affiliated Yueqing Hospital, Wenzhou Medical Univ
  • Jin M; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
  • Pan Y; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
  • Zheng Y; Department of Endocrinology, Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, 325600, China. Electronic address: zywzmc2000@163.com.
  • Lou Y; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China. Electronic address: lyl@wmu.edu.cn.
Talanta ; 269: 125478, 2024 Mar 01.
Article em En | MEDLINE | ID: mdl-38039675
ABSTRACT
Rapid and accurate detection of the hepatitis C virus (HCV) is essential for early diagnosis and prevention of virus transmission. This study presents a novel approach that combines the three-dimensional (3D)-DNA walking nanomachine with catalytic hairpin assembly (CHA) and copper nanoclusters (CuNCs). By integrating CHA with the 3D DNA walking nanomachine, efficient target amplification on 3D surfaces was achieved, leading to improved reaction speed and detection performance. Terminal deoxynucleotidyl transferase (TdT) was utilized to generate T-rich DNA sequences. These sequences served as templates for the formation of CuNCs, which functioned as the readout signal. The optimized 3D-DNA walking nanomachine exhibited excellent sensitivity in detecting HCV, with a detection limit of 42.4 pM and a linear range of 100 pM to 2 nM. The biosensor demonstrated excellent selectivity and reproducibility, with a recovery rate ranging from 94% to 108% for the detection of real samples. This design holds great potential for sensitive, label-free, and reliable detection of HCV in clinical settings. Furthermore, the versatility of this approach allows for the customization of target sequences, thereby facilitating the detection of various nucleic acid targets. Therefore, this method has the potential to advance personalized medicine, disease management, and genetic analysis in the field of molecular diagnosis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 2_ODS3 Problema de saúde: 2_enfermedades_transmissibles Assunto principal: Técnicas Biossensoriais / Hepatite C / DNA Catalítico / MicroRNAs Limite: Humans Idioma: En Revista: Talanta Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 2_ODS3 Problema de saúde: 2_enfermedades_transmissibles Assunto principal: Técnicas Biossensoriais / Hepatite C / DNA Catalítico / MicroRNAs Limite: Humans Idioma: En Revista: Talanta Ano de publicação: 2024 Tipo de documento: Article
...