Your browser doesn't support javascript.
loading
Single Atom Iridium Decorated Nickel Alloys Supported on Segregated MoO2 for Alkaline Water Electrolysis.
Wang, Bin; Li, Jiangnan; Li, Dongze; Xu, Junyuan; Liu, Shoujie; Jiang, Qike; Zhang, Yashi; Duan, Zhiyao; Zhang, Fuxiang.
Afiliação
  • Wang B; State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Zhongshan Road 457, Dalian, 116023, P. R. China.
  • Li J; Center for Advanced Materials Research, School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhongyuan Road 41, Zhengzhou, 450007, P. R. China.
  • Li D; State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Zhongshan Road 457, Dalian, 116023, P. R. China.
  • Xu J; Laboratory of Advanced Spectro-Electrochemistry and Li-Ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P. R. China.
  • Liu S; Laboratory of Advanced Spectro-Electrochemistry and Li-Ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P. R. China.
  • Jiang Q; School of Materials Science and Engineering, Anhui University, Jiulong Road 111, Hefei, 230601, P. R. China.
  • Zhang Y; State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Zhongshan Road 457, Dalian, 116023, P. R. China.
  • Duan Z; State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Zhongshan Road 457, Dalian, 116023, P. R. China.
  • Zhang F; State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Dongxiang Road 1, Xi'an, 710072, P. R. China.
Adv Mater ; 36(11): e2305437, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38109742
ABSTRACT
Hetero-interface engineering has been widely employed to develop supported multicomponent catalysts for water electrolysis, but it still remains a substantial challenge for supported single atom alloys. Herein a conductive oxide MoO2 supported Ir1 Ni single atom alloys (Ir1 Ni@MoO2 SAAs) bifunctional electrocatalysts through surface segregation coupled with galvanic replacement reaction, where the Ir atoms are atomically anchored onto the surface of Ni nanoclusters via the Ir-Ni coordination accompanied with electron transfer from Ni to Ir is reported. Benefiting from the unique structure, the Ir1 Ni@MoO2 SAAs not only exhibit low overpotential of 48.6 mV at 10 mA cm-2 and Tafel slope of 19 mV dec-1 for hydrogen evolution reaction, but also show highly efficient alkaline water oxidation with overpotential of 280 mV at 10 mA cm-2 . Their overall water electrolysis exhibits a low cell voltage of 1.52 V at 10 mA cm-2 and excellent durability. Experiments and theoretical calculations reveal that the Ir-Ni interface effectively weakens hydrogen binding energy, and decoration of the Ir single atoms boost surface reconstruction of Ni species to enhance the coverage of intermediates (OH*) and switch the potential-determining step. It is suggested that this approach opens up a promising avenue to design efficient and durable precious metal bifunctional electrocatalysts.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article
...