Ultra-wide field and new wide field composite retinal image registration with AI-enabled pipeline and 3D distortion correction algorithm.
Eye (Lond)
; 38(6): 1189-1195, 2024 Apr.
Article
em En
| MEDLINE
| ID: mdl-38114568
ABSTRACT
PURPOSE:
This study aimed to compare a new Artificial Intelligence (AI) method to conventional mathematical warping in accurately overlaying peripheral retinal vessels from two different imaging devices confocal scanning laser ophthalmoscope (cSLO) wide-field images and SLO ultra-wide field images.METHODS:
Images were captured using the Heidelberg Spectralis 55-degree field-of-view and Optos ultra-wide field. The conventional mathematical warping was performed using Random Sample Consensus-Sample and Consensus sets (RANSAC-SC). This was compared to an AI alignment algorithm based on a one-way forward registration procedure consisting of full Convolutional Neural Networks (CNNs) with Outlier Rejection (OR CNN), as well as an iterative 3D camera pose optimization process (OR CNN + Distortion Correction [DC]). Images were provided in a checkerboard pattern, and peripheral vessels were graded in four quadrants based on alignment to the adjacent box.RESULTS:
A total of 660 boxes were analysed from 55 eyes. Dice scores were compared between the three methods (RANSAC-SC/OR CNN/OR CNN + DC) 0.3341/0.4665/4784 for fold 1-2 and 0.3315/0.4494/4596 for fold 2-1 in composite images. The images composed using the OR CNN + DC have a median rating of 4 (out of 5) versus 2 using RANSAC-SC. The odds of getting a higher grading level are 4.8 times higher using our OR CNN + DC than RANSAC-SC (p < 0.0001).CONCLUSION:
Peripheral retinal vessel alignment performed better using our AI algorithm than RANSAC-SC. This may help improve co-localizing retinal anatomy and pathology with our algorithm.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Retina
/
Inteligência Artificial
Limite:
Humans
Idioma:
En
Revista:
Eye (Lond)
Assunto da revista:
OFTALMOLOGIA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Estados Unidos