Your browser doesn't support javascript.
loading
A Guinea Pig Model Suggests That Objective Assessment of Acoustic Hearing Preservation in Human Ears With Cochlear Implants Is Confounded by Shifts in the Spatial Origin of Acoustically Evoked Potential Measurements Along the Cochlear Length.
Lee, Choongheon; Hartsock, Jared J; Salt, Alec N; Lichtenhan, Jeffery T.
Afiliação
  • Lee C; Department of Otolaryngology, University of Rochester, Rochester, New York, USA.
  • Hartsock JJ; Department of Cochlear Surgery, Turner Scientific, Inc., Jacksonville, Illinois, USA.
  • Salt AN; Department of Pharmacokinetics, Turner Scientific, Inc., Jacksonville, Illinois, USA.
  • Lichtenhan JT; Department of Otolaryngology, University of South Florida Morsani School of Medicine, Tampa, Florida, USA.
Ear Hear ; 45(3): 666-678, 2024.
Article em En | MEDLINE | ID: mdl-38178312
ABSTRACT

OBJECTIVES:

Our recent empirical findings have shown that the auditory nerve compound action potential (CAP) evoked by a low-level tone burst originates from a narrow cochlear region tuned to the tone burst frequency. At moderate to high sound levels, the origins shift to the most sensitive audiometric regions rather than the extended high-frequency regions of the cochlear base. This means that measurements evoked from extended high-frequency sound stimuli can shift toward the apex with increasing level. Here we translate this study to understand the spatial origin of acoustically evoked responses from ears that receive cochlear implants, an emerging area of research and clinical practice that is not completely understood. An essential step is to first understand the influence of the cochlear implant in otherwise naive ears. Our objective was to understand how function of the high-frequency cochlear base, which can be excited by the intense low-frequency sounds that are frequently used for objective intra- and postoperative monitoring, can be influenced by the presence of the cochlear implant.

DESIGN:

We acoustically evoked responses and made measurements with an electrode placed near the guinea pig round window. The cochlear implant was not utilized for either electrical stimulation or recording purposes. With the cochlear implant in situ, CAPs were acoustically evoked from 2 to 16 kHz tone bursts of various levels while utilizing the slow perfusion of a kainic acid solution from the cochlear apex to the cochlear aqueduct in the base, which sequentially reduced neural responses from finely spaced cochlear frequency regions. This cochlear perfusion technique reveals the spatial origin of evoked potential measurements and provides insight on what influence the presence of an implant has on acoustical hearing.

RESULTS:

Threshold measurements at 3 to 11 kHz were elevated by implantation. In an individual ear, thresholds were elevated and lowered as cochlear implant was respectively inserted and removed, indicative of "conductive hearing loss" induced by the implant. The maximum threshold elevation occurred at most sensitive region of the naive guinea pig ear (33.66 dB at 8 kHz), making 11 kHz the most sensitive region to acoustic sounds for guinea pig ears with cochlear implants. Conversely, the acute implantation did not affect the low-frequency, 500 Hz thresholds and suprathreshold function, as shown by the auditory nerve overlapped waveform. As the sound pressure level of the tone bursts increased, mean data show that the spatial origin of CAPs along the cochlear length shifted toward the most sensitive cochlear region of implanted ears, not the extended high-frequency cochlear regions. However, data from individual ears showed that after implantation, measurements from moderate to high sound pressure levels originate in places that are unique to each ear.

CONCLUSIONS:

Alterations to function of the cochlear base from the in situ cochlear implant may influence objective measurements of implanted ears that are frequently made with intense low-frequency sound stimuli. Our results from guinea pigs advance the interpretation of measurements used to understand how and when residual acoustic hearing is lost in human ears receiving a cochlear implant.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Implantes Cocleares / Implante Coclear Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Ear Hear / Ear and hearing / Ear hear Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Implantes Cocleares / Implante Coclear Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Ear Hear / Ear and hearing / Ear hear Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos
...