Your browser doesn't support javascript.
loading
The fabrication of flame-retardant viscose fabrics with phytic acid-based flame retardants: Balancing efficient flame retardancy and tensile strength.
Song, Wan-Meng; Zhang, Li-Yao; Li, Ping; Ni, Yan-Peng; Liu, Yun.
Afiliação
  • Song WM; College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao Key Laboratory of Flame-Retardant Textile Materials,
  • Zhang LY; College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao Key Laboratory of Flame-Retardant Textile Materials,
  • Li P; College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao Key Laboratory of Flame-Retardant Textile Materials,
  • Ni YP; College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao Key Laboratory of Flame-Retardant Textile Materials,
  • Liu Y; College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao Key Laboratory of Flame-Retardant Textile Materials,
Int J Biol Macromol ; 260(Pt 2): 129596, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38253158
ABSTRACT
Viscose fabrics have been widely used in various applications, but their potential fire hazard has been a concern. To address this issue, improving the flame retardancy of viscose fabrics has become a significant priority. Phytic acid (PA) and xylitol were used to create a novel flame retardant, PAXY. PAXY was finished on viscose fabrics by pad-dry-curing process, and the performance of coated viscose fabrics was investigated. The results showed that the limiting oxygen index value of PAXY13-100 (fabrics finished with a 100 g/L flame-retardant solution and the flame retardant synthesized by a 1 3 M ratio of PA to xylitol) reached 32.8 % and the heat release rate value was decreased by 77 %. Based on the findings from the analysis of both the gas phase and condensed phase products, PAXY promoted the dehydration of viscose fabrics to produce a denser char layer, which inhibited the production of flammable gases. Surprisingly, the breaking force retention of PAXY13-100 reached 90 % in warp and 114 % in weft. Compared with that of 100 g/L PA-treated fabrics, the breaking force of PAXY13-100 increased by nearly 400 %. This work provides a new strategy for PA-based flame-retardant finishing with the synergy of flame retardancy and breaking force retention.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Retardadores de Chama Idioma: En Revista: Int J Biol Macromol / Int. j. biol. macromol / International journal of biological macromolecules Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Retardadores de Chama Idioma: En Revista: Int J Biol Macromol / Int. j. biol. macromol / International journal of biological macromolecules Ano de publicação: 2024 Tipo de documento: Article
...