Your browser doesn't support javascript.
loading
Magnetic coagulometry: towards a new nanotechnological tool for ex vivo monitoring coagulation in human whole blood.
Santana-Otero, Antonio; Harper, Alan; Telling, Neil; Ortega, Daniel; Cabrera, David.
Afiliação
  • Santana-Otero A; Condensed Matter Physics Department, Faculty of Sciences, University of Cádiz, Campus Universitario Rio San Pedro s/n, 11510 Puerto Real, Cádiz, Spain. daniel.ortega@uca.es.
  • Harper A; School of Medicine, Keele University, Newcastle-under-Lyme, Staffordshire. ST5 5BG, UK.
  • Telling N; School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thronburrow Drive, Hartshill, Stoke on Trent, ST47QB, UK. d.c.cabrera@keele.ac.uk.
  • Ortega D; Condensed Matter Physics Department, Faculty of Sciences, University of Cádiz, Campus Universitario Rio San Pedro s/n, 11510 Puerto Real, Cádiz, Spain. daniel.ortega@uca.es.
  • Cabrera D; iMdea Nanociencia, Campus Universitario de Cantoblanco. C/Faraday, 9, 28049, Madrid, Spain.
Nanoscale ; 16(7): 3534-3548, 2024 Feb 15.
Article em En | MEDLINE | ID: mdl-38285061
ABSTRACT
Blood clotting disorders consisting of unwanted blood clot formation or excessive bleeding are some of the main causes of death worldwide. However, there are significant limitations in the current methods used to clinically monitor the dynamics of clot formation in human whole blood ex vivo. Here a new magnetic coagulometry platform for testing ex vivo coagulation is described. This platform exploits the sensitivity of the out-of-phase component of alternating current (AC) magnetic susceptibility (χ'') to variations in mobility and agglomeration of magnetic nanoparticles when trapped during blood clot formation. By labelling human whole blood with magnetic nanoparticles, the out-of-phase component of AC magnetic susceptibility shows that the dynamics of blood clot formation correlates with a decrease in the out-of-phase component χ'' over time activation of coagulation. This is caused by a rapid immobilisation of nanoparticles upon blood coagulation and compaction. In contrast, this rapid fall in the out-of-phase component χ'' is significantly slowed down when blood is pre-treated with three different anticoagulant drugs. Remarkably, the system showed sensitivity towards the effect of clinically used direct oral anticoagulation (DOAC) drugs in whole blood coagulation, in contrast to the inability of clinical routine tests prothrombin time (PT) and partial thromboplastin time (PTT) to efficiently monitor this effect. Translation of this nanomagnetic approach into clinic can provide a superior method for monitoring blood coagulation and improve the efficiency of the current diagnostic techniques.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Problema de saúde: 6_cardiovascular_diseases Assunto principal: Trombose / Coagulação Sanguínea Limite: Humans Idioma: En Revista: Nanoscale Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Problema de saúde: 6_cardiovascular_diseases Assunto principal: Trombose / Coagulação Sanguínea Limite: Humans Idioma: En Revista: Nanoscale Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha
...