Your browser doesn't support javascript.
loading
Translocation, enzymatic reduction and toxicity of dimethylarsenate in rice.
Wang, Yi-Jie; Dong, Chun-Yan; Tang, Zhong; Zhao, Fang-Jie.
Afiliação
  • Wang YJ; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
  • Dong CY; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
  • Tang Z; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address: Tangzhong@njau.edu.cn.
  • Zhao FJ; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
Plant Physiol Biochem ; 207: 108393, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38290344
ABSTRACT
Dimethylarsenate [DMAs(V)] can be produced by some soil microorganisms through methylation of inorganic arsenic (As), especially in anoxic paddy soils. DMAs(V) is more phytotoxic than inorganic As and can cause the physiological disorder straighthead disease in rice. Rice cultivars vary widely in the resistance to DMAs(V), but the mechanism remains elusive. Here, we investigated the differences in DMAs(V) uptake, translocation, and reduction to dimethylarsenite [DMAs(III)], as well as the effects on the metabolome, between two rice cultivars Mars and Zhe733. We found that Mars was 11-times more resistant to DMAs(V) than Zhe733. Mars accumulated more DMAs(V) in the roots, whereas Zhe733 translocated more DMAs(V) to the shoots and reduced more DMAs(V) to DMAs(III). DMAs(III) was more toxic than DMAs(V). Using heterologous expression and in vitro enzyme assays, we showed that the glutathione-S-transferases OsGSTU17 and OsGSTU50 were able to reduce DMAs(V) to DMAs(III). The expression levels of OsGSTU17 and OsGSTU50 were higher in the shoot of Zhe733 compared to Mars. Metabolomic analysis in rice shoots showed that glutathione (GSH) metabolism was perturbed by DMAs(V) toxicity in Zhe733. Application of exogenous GSH significantly alleviated the toxicity of DMAs(V) in Zhe733. Taken together, the results suggest that Mars is more resistant to DMAs(V) than Zhe733 because of a lower root-to-shoot translocation and a smaller capacity to reduce DMAs(V) to DMAs(III).
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arsênio / Arsenicais / Oryza / Poluentes do Solo Idioma: En Revista: Plant Physiol Biochem Assunto da revista: BIOQUIMICA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arsênio / Arsenicais / Oryza / Poluentes do Solo Idioma: En Revista: Plant Physiol Biochem Assunto da revista: BIOQUIMICA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...