Your browser doesn't support javascript.
loading
CBe4H6: a molecular rotor with a built-in on-off switch.
Jin, Bo; Yuan, Caixia; Guo, Jin-Chang; Wu, Yan-Bo.
Afiliação
  • Jin B; Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, 030006, People's Republic of China. wyb@sxu.edu.cn.
  • Yuan C; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, 030006, People's Republic of China.
  • Guo JC; Department of Chemistry, Xinzhou Normal University, 1 East Dunqi Street, Xinzhou, Shanxi, 034000, People's Republic of China.
  • Wu YB; Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, 030006, People's Republic of China. wyb@sxu.edu.cn.
Nanoscale ; 16(9): 4778-4786, 2024 Feb 29.
Article em En | MEDLINE | ID: mdl-38305072
ABSTRACT
It is highly challenging to control (stop and resume as needed) molecular rotors because their intramolecular rotations are electronically enabled by delocalized σ bonding, and the desired control needs to be able to destroy and restore such σ bonding, which usually means difficult chemical manipulation (substitution or doping atom). In this work, we report CBe4H6, a molecular rotor that can be controlled independently of chemical manipulation. This molecule exhibited the uninterrupted free rotation of Be and H atoms around the central carbon in first-principles molecular dynamics simulations at high temperatures (600 and 1000 K), but the rotation cannot be witnessed in the simulation at room temperature (298 K). Specifically, when a C-H bond in the CBe4H6 molecule adopts the equatorial configuration at 298 K, it destroys the central delocalized σ bonding and blocks the intramolecular rotation (the rotor is turned "OFF"); when it can adopt the axial configuration at 600 and 1000 K, the central delocalized σ bonding can be restored and the intramolecular rotation can be resumed (the rotor is turned "ON"). Neutral CBe4H6 is thermodynamically favorable and electronically stable, as reflected by a wide HOMO-LUMO gap of 7.99 eV, a high vertical detachment energy of 9.79 eV, and a positive electron affinity of 0.24 eV, so it may be stable enough for the synthesis, not only in the gas phase, but also in the condensed phase.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2024 Tipo de documento: Article
...