Your browser doesn't support javascript.
loading
Predicting Hypoxia Using Machine Learning: Systematic Review.
Pigat, Lena; Geisler, Benjamin P; Sheikhalishahi, Seyedmostafa; Sander, Julia; Kaspar, Mathias; Schmutz, Maximilian; Rohr, Sven Olaf; Wild, Carl Mathis; Goss, Sebastian; Zaghdoudi, Sarra; Hinske, Ludwig Christian.
Afiliação
  • Pigat L; Digital Medicine, University Hospital of Augsburg, Augsburg, Germany.
  • Geisler BP; Digital Medicine, University Hospital of Augsburg, Augsburg, Germany.
  • Sheikhalishahi S; Digital Medicine, University Hospital of Augsburg, Augsburg, Germany.
  • Sander J; Digital Medicine, University Hospital of Augsburg, Augsburg, Germany.
  • Kaspar M; Digital Medicine, University Hospital of Augsburg, Augsburg, Germany.
  • Schmutz M; Digital Medicine, University Hospital of Augsburg, Augsburg, Germany.
  • Rohr SO; Hematology and Oncology, University Hospital of Augsburg, Augsburg, Germany.
  • Wild CM; Digital Medicine, University Hospital of Augsburg, Augsburg, Germany.
  • Goss S; Digital Medicine, University Hospital of Augsburg, Augsburg, Germany.
  • Zaghdoudi S; Gynecology and Obstetrics, University Hospital of Augsburg, Augsburg, Germany.
  • Hinske LC; Digital Medicine, University Hospital of Augsburg, Augsburg, Germany.
JMIR Med Inform ; 12: e50642, 2024 Feb 02.
Article em En | MEDLINE | ID: mdl-38329094
ABSTRACT

Background:

Hypoxia is an important risk factor and indicator for the declining health of inpatients. Predicting future hypoxic events using machine learning is a prospective area of study to facilitate time-critical interventions to counter patient health deterioration.

Objective:

This systematic review aims to summarize and compare previous efforts to predict hypoxic events in the hospital setting using machine learning with respect to their methodology, predictive performance, and assessed population.

Methods:

A systematic literature search was performed using Web of Science, Ovid with Embase and MEDLINE, and Google Scholar. Studies that investigated hypoxia or hypoxemia of hospitalized patients using machine learning models were considered. Risk of bias was assessed using the Prediction Model Risk of Bias Assessment Tool.

Results:

After screening, a total of 12 papers were eligible for analysis, from which 32 models were extracted. The included studies showed a variety of population, methodology, and outcome definition. Comparability was further limited due to unclear or high risk of bias for most studies (10/12, 83%). The overall predictive performance ranged from moderate to high. Based on classification metrics, deep learning models performed similar to or outperformed conventional machine learning models within the same studies. Models using only prior peripheral oxygen saturation as a clinical variable showed better performance than models based on multiple variables, with most of these studies (2/3, 67%) using a long short-term memory algorithm.

Conclusions:

Machine learning models provide the potential to accurately predict the occurrence of hypoxic events based on retrospective data. The heterogeneity of the studies and limited generalizability of their results highlight the need for further validation studies to assess their predictive performance.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies / Systematic_reviews Idioma: En Revista: JMIR Med Inform Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies / Systematic_reviews Idioma: En Revista: JMIR Med Inform Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha
...