Your browser doesn't support javascript.
loading
Predicting COVID-19 hospitalizations: The importance of healthcare hotlines, test positivity rates and vaccination coverage.
van Zoest, Vera; Lindberg, Karl; Varotsis, Georgios; Osei, Frank Badu; Fall, Tove.
Afiliação
  • van Zoest V; Department of Information Technology, Uppsala University, P.O. Box 337, Uppsala 751 05, Sweden; Department of Systems Science for Defence and Security, Swedish Defence University, P.O. Box 27805, Stockholm 115 93, Sweden. Electronic address: vera.van.zoest@it.uu.se.
  • Lindberg K; Department of Information Technology, Uppsala University, P.O. Box 337, Uppsala 751 05, Sweden; Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala 751 85, Sweden.
  • Varotsis G; Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala 751 85, Sweden.
  • Osei FB; Faculty of Geo-Information Science and Earth Observation, University of Twente, P.O. Box 217, Enschede 7500 AE, the Netherlands.
  • Fall T; Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala 751 85, Sweden.
Spat Spatiotemporal Epidemiol ; 48: 100636, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38355257
ABSTRACT
In this study, we developed a negative binomial regression model for one-week ahead spatio-temporal predictions of the number of COVID-19 hospitalizations in Uppsala County, Sweden. Our model utilized weekly aggregated data on testing, vaccination, and calls to the national healthcare hotline. Variable importance analysis revealed that calls to the national healthcare hotline were the most important contributor to prediction performance when predicting COVID-19 hospitalizations. Our results support the importance of early testing, systematic registration of test results, and the value of healthcare hotline data in predicting hospitalizations. The proposed models may be applied to studies modeling hospitalizations of other viral respiratory infections in space and time assuming count data are overdispersed. Our suggested variable importance analysis enables the calculation of the effects on the predictive performance of each covariate. This can inform decisions about which types of data should be prioritized, thereby facilitating the allocation of healthcare resources.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 1_ASSA2030 / 2_ODS3 / 4_TD Problema de saúde: 1_doencas_nao_transmissiveis / 2_muertes_prematuras_enfermedades_notrasmisibles / 4_pneumonia Assunto principal: COVID-19 Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Spat Spatiotemporal Epidemiol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 1_ASSA2030 / 2_ODS3 / 4_TD Problema de saúde: 1_doencas_nao_transmissiveis / 2_muertes_prematuras_enfermedades_notrasmisibles / 4_pneumonia Assunto principal: COVID-19 Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Spat Spatiotemporal Epidemiol Ano de publicação: 2024 Tipo de documento: Article
...