Your browser doesn't support javascript.
loading
Efficient Ethane and Propane Separation from Natural Gas Using Heterometallic Metal-Organic Frameworks with Interpenetrated Structures.
Wang, Yong; Zhao, Xuanyu; Han, Shaoxiong; Wang, Yongzhen.
Afiliação
  • Wang Y; College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
  • Zhao X; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
  • Han S; Shanxi Joint Laboratory of Coal Based Solid Waste Resource Utilization and Green Ecological Development, Taiyuan 030024, China.
  • Wang Y; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
ACS Appl Mater Interfaces ; 16(8): 10468-10474, 2024 Feb 28.
Article em En | MEDLINE | ID: mdl-38359417
ABSTRACT
The development of efficient technology for natural gas separation in industrial processes has become imperative. In this regard, the exploration of novel and effective adsorbents has gained significant attention. One promising approach is the metal regulation of metal-organic frameworks (MOFs), particularly heterometallic MOFs, which offer greater potential for gas separation due to their diverse composition. This study presents the synthesis of a series of iron- and vanadium-based heterometallic MOFs (MIL-126), featuring interpenetrated structures, and investigates their adsorption performance for methane (CH4), ethane (C2H6), and propane (C3H8). Experimental results reveal that the choice of metal combinations within the MOF framework significantly influences the adsorption performance of MIL-126. Notably, heterometallic MIL-126(Fe/Ni) exhibits a stronger binding affinity for C3H8, with an impressive uptake of 177 cm3/g. The C3H8/CH4 ideal adsorbed solution theory selectivity of MIL-126(Fe/Ni) surpasses that of MIL-126(Fe) by a factor of 7, reaching a value of 853, second only to the highest reported value. Furthermore, MIL-126(Fe/Ni) exhibits remarkable potential for the recovery of pure CH4 from the equimolar C3H8/CH4 mixture, with the amount of pure CH4 approaching the maximum reported value for MOFs. Insights from isosteric heat at zero loading and Henry's coefficients indicate that the transformation of metal types leads to a change in the interaction energy between C3H8 and the framework. Furthermore, breakthrough experiments validate the effective separation capability of MIL-126(Fe/Ni) for CH4/C2H6/C3H8 mixtures. These findings underscore the remarkable potential of heterometallic MOFs in constructing a wide range of new MOFs with tailorable properties, thereby enhancing their gas separation performance.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces / ACS appl. mater. interfaces (Online) / ACS applied materials & interfaces (Online) Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces / ACS appl. mater. interfaces (Online) / ACS applied materials & interfaces (Online) Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...