Your browser doesn't support javascript.
loading
Bio-upcycling of even and uneven medium-chain-length diols and dicarboxylates to polyhydroxyalkanoates using engineered Pseudomonas putida.
Ackermann, Yannic S; de Witt, Jan; Mezzina, Mariela P; Schroth, Christoph; Polen, Tino; Nikel, Pablo I; Wynands, Benedikt; Wierckx, Nick.
Afiliação
  • Ackermann YS; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
  • de Witt J; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
  • Mezzina MP; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
  • Schroth C; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
  • Polen T; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
  • Nikel PI; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
  • Wynands B; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
  • Wierckx N; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany. n.wierckx@fz-juelich.de.
Microb Cell Fact ; 23(1): 54, 2024 Feb 16.
Article em En | MEDLINE | ID: mdl-38365718
ABSTRACT
Bio-upcycling of plastics is an emerging alternative process that focuses on extracting value from a wide range of plastic waste streams. Such streams are typically too contaminated to be effectively processed using traditional recycling technologies. Medium-chain-length (mcl) diols and dicarboxylates (DCA) are major products of chemically or enzymatically depolymerized plastics, such as polyesters or polyethers. In this study, we enabled the efficient metabolism of mcl-diols and -DCA in engineered Pseudomonas putida as a prerequisite for subsequent bio-upcycling. We identified the transcriptional regulator GcdR as target for enabling metabolism of uneven mcl-DCA such as pimelate, and uncovered amino acid substitutions that lead to an increased coupling between the heterologous ß-oxidation of mcl-DCA and the native degradation of short-chain-length DCA. Adaptive laboratory evolution and subsequent reverse engineering unravelled two distinct pathways for mcl-diol metabolism in P. putida, namely via the hydroxy acid and subsequent native ß-oxidation or via full oxidation to the dicarboxylic acid that is further metabolized by heterologous ß-oxidation. Furthermore, we demonstrated the production of polyhydroxyalkanoates from mcl-diols and -DCA by a single strain combining all required metabolic features. Overall, this study provides a powerful platform strain for the bio-upcycling of complex plastic hydrolysates to polyhydroxyalkanoates and leads the path for future yield optimizations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pseudomonas putida / Poli-Hidroxialcanoatos Idioma: En Revista: Microb Cell Fact Assunto da revista: BIOTECNOLOGIA / MICROBIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pseudomonas putida / Poli-Hidroxialcanoatos Idioma: En Revista: Microb Cell Fact Assunto da revista: BIOTECNOLOGIA / MICROBIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha
...