Your browser doesn't support javascript.
loading
Dual-mode fluorimetric and colorimetric sensors based on iron and nitrogen co-doped carbon dots for the detection of dopamine.
Sun, Peng; Shang, Mingzhao; Xie, Ruyan; Gao, Yu; Tian, Miaomiao; Dai, Qijun; Zhang, Fang; Chai, Fang.
Afiliação
  • Sun P; Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China.
  • Shang M; Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China.
  • Xie R; Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China.
  • Gao Y; Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China.
  • Tian M; Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China.
  • Dai Q; Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China.
  • Zhang F; Purple Mountain Laboratories, Mozhou East Road, Nanjing, Jiangsu Province, 211111, China. Electronic address: Zhangfang@pmlabs.com.cn.
  • Chai F; Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China.
Food Chem ; 445: 138794, 2024 Jul 01.
Article em En | MEDLINE | ID: mdl-38394907
ABSTRACT
Determination of dopamine (DA) is crucial for its intimate relationship with clinical trials and biological environment. Herein, Fe, N co-doped carbon dots (AFC-CDs) were fabricated by optimizing precursors and reaction conditions for fluorimetric/colorimetric dual-mode sensing of DA. With synergistic influence of Förster resonance energy transfer and static quenching effect, DA significantly quenched the blue luminescence of AFC-CDs at 442 nm, the production of recognizable tan-brown complex caused evident colorimetric response, achieved the dual-mode fluorimetric/colorimetric sensing for DA. The excellent selectivity and satisfied sensitivity can be confirmed with the limit of detection at 0.29 µM and 2.31 µM via fluorimetric/colorimetric mode respectively. The reliability and practicability were proved by recovery of 94.81-101.61% in real samples. Notably, the proposed electron transfer way between AFC-CDs and DA was hypothesized logically, indicated dual-mode probe provided a promising platform for the sensing of trace DA, and could be expanded in environment and food safety.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pontos Quânticos / Ferro Idioma: En Revista: Food Chem Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pontos Quânticos / Ferro Idioma: En Revista: Food Chem Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...