Your browser doesn't support javascript.
loading
Efficient polymeric nanoparticles for RNAi in macrophage reveal complex effects on polarization markers upon knockdown of STAT3/STAT6.
Walther, Maximilian; Jenke, Robert; Aigner, Achim; Ewe, Alexander.
Afiliação
  • Walther M; Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany.
  • Jenke R; Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany.
  • Aigner A; Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany. Electronic address: achim.aigner@medizin.uni-leipzig.de.
  • Ewe A; Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany. Electronic address: alexander.ewe@medizin.uni-leipzig.de.
Eur J Pharm Biopharm ; 197: 114232, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38395176
ABSTRACT
Tumor associated macrophages (TAMs) are the most abundant immune cell type in the tissue microenvironment, affecting tumor progression, metastasis and therapeutic response. Different macrophage activation ("polarization") states can be distinguished resting (M0; non-activated), pro-inflammatory/anti-tumorigenic (M1) and anti-inflammatory/pro-tumorigenic (M2). When exploring macrophages as targets in novel cancer immunotherapy approaches, TAM repolarization from the M2 into the M1 phenotype is an intriguing strategy to block their pro-tumoral and enhance their anti-tumoral properties. In the context of RNAi-based gene knockdown of M2 promoting genes, major bottlenecks include cellular siRNA delivery and correct intracellular processing. This is particularly true in case of macrophages as a cell type well-known to be notoriously hard-to-transfect. Among polymeric nanocarriers, the cationic polymer polyethylenimine (PEI) is widely explored for delivering nucleic acids. Further advanced nanocarriers are tyrosine-modified polymers based on PEI or polypropylenimine dendrimers (PPI) for highly efficient siRNA delivery in vitro and in vivo. In this paper, we explored a panel of PEI- or PPI-based nanoparticle systems for siRNA-mediated gene knockdown efficacy in macrophages and subsequent TAM repolarization. The tyrosine-modified linear 10 kDa PEI (LP10Y) or branched 5 kDa PEI (P5Y) as well as a tyrosine-modified PPI (PPI-Y) were found most efficient for gene knockdown in macrophage cell lines or primary macrophages, independent of their polarization. Knockdown of STAT6 or STAT3 led to repolarization of M2 macrophages, as indicated by alterations in various M2 and M1 marker levels. This highly specific approach also demonstrated non-redundant functions of STAT3 and STAT6. Importantly, macrophage re-polarization from M2 to M1 upon PPI-Y/siRNA-mediated STAT6 knockdown increased tumor cell phagocytosis in a co-culture model. In conclusion, we identify certain tyrosine-modified PEI- or PPI-based nanoparticles as particularly efficient for macrophage transfection, and the specific, siRNA-mediated STAT6 knockdown as a promising approach for macrophage repolarization and enhancement of their tumor cell suppressive role.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Macrófagos Idioma: En Revista: Eur J Pharm Biopharm Assunto da revista: FARMACIA / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Macrófagos Idioma: En Revista: Eur J Pharm Biopharm Assunto da revista: FARMACIA / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha
...