Your browser doesn't support javascript.
loading
Noninvasive Diabetes Detection through Human Breath Using TinyML-Powered E-Nose.
Gudiño-Ochoa, Alberto; García-Rodríguez, Julio Alberto; Ochoa-Ornelas, Raquel; Cuevas-Chávez, Jorge Ivan; Sánchez-Arias, Daniel Alejandro.
Afiliação
  • Gudiño-Ochoa A; Electronics Department, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Guzmán, Ciudad Guzmán 49100, Mexico.
  • García-Rodríguez JA; Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Ciudad Guzmán 49000, Mexico.
  • Ochoa-Ornelas R; Systems and Computation Department, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Guzmán, Ciudad Guzmán 49100, Mexico.
  • Cuevas-Chávez JI; Electronics Department, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Guzmán, Ciudad Guzmán 49100, Mexico.
  • Sánchez-Arias DA; Electronics Department, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Guzmán, Ciudad Guzmán 49100, Mexico.
Sensors (Basel) ; 24(4)2024 Feb 17.
Article em En | MEDLINE | ID: mdl-38400451
ABSTRACT
Volatile organic compounds (VOCs) in exhaled human breath serve as pivotal biomarkers for disease identification and medical diagnostics. In the context of diabetes mellitus, the noninvasive detection of acetone, a primary biomarker using electronic noses (e-noses), has gained significant attention. However, employing e-noses requires pre-trained algorithms for precise diabetes detection, often requiring a computer with a programming environment to classify newly acquired data. This study focuses on the development of an embedded system integrating Tiny Machine Learning (TinyML) and an e-nose equipped with Metal Oxide Semiconductor (MOS) sensors for real-time diabetes detection. The study encompassed 44 individuals, comprising 22 healthy individuals and 22 diagnosed with various types of diabetes mellitus. Test results highlight the XGBoost Machine Learning algorithm's achievement of 95% detection accuracy. Additionally, the integration of deep learning algorithms, particularly deep neural networks (DNNs) and one-dimensional convolutional neural network (1D-CNN), yielded a detection efficacy of 94.44%. These outcomes underscore the potency of combining e-noses with TinyML in embedded systems, offering a noninvasive approach for diabetes mellitus detection.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus / Compostos Orgânicos Voláteis Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus / Compostos Orgânicos Voláteis Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México
...