Your browser doesn't support javascript.
loading
Comparison of the Discrimination Performance of AI Scoring and the Brixia Score in Predicting COVID-19 Severity on Chest X-Ray Imaging: Diagnostic Accuracy Study.
Tenda, Eric Daniel; Yunus, Reyhan Eddy; Zulkarnaen, Benny; Yugo, Muhammad Reynalzi; Pitoyo, Ceva Wicaksono; Asaf, Moses Mazmur; Islamiyati, Tiara Nur; Pujitresnani, Arierta; Setiadharma, Andry; Henrina, Joshua; Rumende, Cleopas Martin; Wulani, Vally; Harimurti, Kuntjoro; Lydia, Aida; Shatri, Hamzah; Soewondo, Pradana; Yusuf, Prasandhya Astagiri.
Afiliação
  • Tenda ED; Department of Internal Medicine, Pulmonology and Critical Care Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Yunus RE; Department of Radiology, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Zulkarnaen B; Department of Radiology, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Yugo MR; Department of Radiology, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Pitoyo CW; Department of Internal Medicine, Pulmonology and Critical Care Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Asaf MM; Department of Radiology, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Islamiyati TN; Department of Internal Medicine, Pulmonology and Critical Care Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Pujitresnani A; Department of Medical Physiology and Biophysics/ Medical Technology Cluster IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
  • Setiadharma A; Department of Internal Medicine, Pulmonology and Critical Care Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Henrina J; Department of Internal Medicine, Pulmonology and Critical Care Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Rumende CM; Department of Internal Medicine, Pulmonology and Critical Care Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Wulani V; Department of Radiology, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Harimurti K; Department of Internal Medicine, Geriatric Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Lydia A; Department of Internal Medicine, Nephrology and Hypertension Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Shatri H; Department of Internal Medicine, Psychosomatic Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Soewondo P; Department of Internal Medicine, Endocrinology - Metabolism - Diabetes division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia.
  • Yusuf PA; Department of Medical Physiology and Biophysics/ Medical Technology Cluster IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
JMIR Form Res ; 8: e46817, 2024 Mar 07.
Article em En | MEDLINE | ID: mdl-38451633
ABSTRACT

BACKGROUND:

The artificial intelligence (AI) analysis of chest x-rays can increase the precision of binary COVID-19 diagnosis. However, it is unknown if AI-based chest x-rays can predict who will develop severe COVID-19, especially in low- and middle-income countries.

OBJECTIVE:

The study aims to compare the performance of human radiologist Brixia scores versus 2 AI scoring systems in predicting the severity of COVID-19 pneumonia.

METHODS:

We performed a cross-sectional study of 300 patients suspected with and with confirmed COVID-19 infection in Jakarta, Indonesia. A total of 2 AI scores were generated using CAD4COVID x-ray software.

RESULTS:

The AI probability score had slightly lower discrimination (area under the curve [AUC] 0.787, 95% CI 0.722-0.852). The AI score for the affected lung area (AUC 0.857, 95% CI 0.809-0.905) was almost as good as the human Brixia score (AUC 0.863, 95% CI 0.818-0.908).

CONCLUSIONS:

The AI score for the affected lung area and the human radiologist Brixia score had similar and good discrimination performance in predicting COVID-19 severity. Our study demonstrated that using AI-based diagnostic tools is possible, even in low-resource settings. However, before it is widely adopted in daily practice, more studies with a larger scale and that are prospective in nature are needed to confirm our findings.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: JMIR Form Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Indonésia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: JMIR Form Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Indonésia
...