Your browser doesn't support javascript.
loading
DNA methylome analysis reveals novel insights into active hypomethylated regulatory mechanisms of temperature-dependent flower opening in Osmanthus fragrans.
Zhong, Shiwei; Zhu, Huijun; Li, Wenle; Wu, Dan; Miao, Yunfeng; Dong, Bin; Wang, Yiguang; Xiao, Zhen; Fang, Qiu; Deng, Jinping; Zhao, Hongbo.
Afiliação
  • Zhong S; Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
  • Zhu H; Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
Hortic Res ; 11(3): uhae010, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38464472
ABSTRACT
Short-term ambient low temperature (ALT) stimulation is necessary for Osmanthus fragrans to facilitate continued flower opening after floral bud development reaches maturity. DNA methylation, a vital epigenetic modification, regulates various biological processes in response to temperature fluctuations. However, its role in temperature-driven flower opening remains elusive. In this study, we identified the pivotal timeframe during which O. fragrans promptly detected temperature cues. Using whole-genome bisulfite sequencing, we explored global DNA hypomethylation during this phase, with the most significant changes occurring in CHH sequence contexts. Auxin transport inhibitor (TIBA) application revealed that ALT-induced endogenous auxin accumulation promoted peduncle elongation. In our mRNA-seq analysis, we discovered that the differentially expressed genes (DEGs) with hypo-differentially methylated regions (hypo-DMRs) were mainly enriched in auxin and temperature response, RNA processing, and carbohydrate and lipid metabolism. Transcripts of three DNA demethylase genes (OfROS1a, OfDML3, OfDME) showed upregulation. Furthermore, all DNA methylase genes, except OfCMT2b, also displayed increased expression, specifically with two of them, OfCMT3a and OfCMT1, being associated with hypo-DMRs. Promoter assays showed that OfROS1a, with promoters containing low-temperature- and auxin-responsive elements, were activated by ALT and exogenous IAA at low concentrations but inhibited at high concentrations. Overexpression of OfROS1 reduced endogenous auxin levels but enhanced the expression of genes related to auxin response and spliceosome in petunia. Furthermore, OfROS1 promoted sucrose synthesis in petunia corollas. Our data characterized the rapid response of active DNA hypomethylation to ALT and suggested a possible epiregulation of temperature-dependent flower opening in O. fragrans. This study revealed the pivotal role of DNA hypomethylation in O. fragrans during the ALT-responsive phase before flower opening, involving dynamic DNA demethylation, auxin signaling modulation, and a potential feedback loop between hypomethylation and methylation.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 1_ASSA2030 Problema de saúde: 1_geracao_evidencia_conhecimento Idioma: En Revista: Hortic Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Contexto em Saúde: 1_ASSA2030 Problema de saúde: 1_geracao_evidencia_conhecimento Idioma: En Revista: Hortic Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...