Your browser doesn't support javascript.
loading
Planar Thermoelectric Microgenerators in Application to Power RFID Tags.
Dziedzic, Andrzej; Wójcik, Szymon; Gierczak, Miroslaw; Bernik, Slavko; Brguljan, Nana; Reinhardt, Kathrin; Körner, Stefan.
Afiliação
  • Dziedzic A; Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
  • Wójcik S; Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
  • Gierczak M; Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
  • Bernik S; Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
  • Brguljan N; Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
  • Reinhardt K; Fraunhofer IKTS, Winterbergstraße 28, 01277 Dresden, Germany.
  • Körner S; Fraunhofer IKTS, Winterbergstraße 28, 01277 Dresden, Germany.
Sensors (Basel) ; 24(5)2024 Mar 02.
Article em En | MEDLINE | ID: mdl-38475182
ABSTRACT
This paper presents an innovative approach to the integration of thermoelectric microgenerators (µTEGs) based on thick-film thermopiles of planar constantan-silver (CuNi-Ag) and calcium cobaltite oxide-silver (Ca3Co4O9-Ag) thick-film thermopiles with radio frequency identification (RFID) technology. The goal was to consider using the TEG for an active or semi-passive RFID tag. The proposed implementation would allow the communication distance to be increased or even operated without changing batteries. This article discusses the principles of planar thermoelectric microgenerators (µTEGs), focusing on their ability to convert the temperature difference into electrical energy. The concept of integration with active or semi-passive tags is presented, as well as the results of energy efficiency tests, considering various environmental conditions. On the basis of the measurements, the parameters of thermopiles consisting of more thermocouples were simulated to provide the required voltage and power for cooperation with RFID tags. The conclusions of the research indicate promising prospects for the integration of planar thermoelectric microgenerators with RFID technology, opening the way to more sustainable and efficient monitoring and identification systems. Our work provides the theoretical basis and practical experimental data for the further development and implementation of this innovative technology.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Polônia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Polônia
...