Your browser doesn't support javascript.
loading
A framework for estimating soil water characteristic curve and hydraulic conductivity function of permeable reactive media.
Gray, Christopher S; Won, Jongmuk; Burns, Susan E.
Afiliação
  • Gray CS; Geosyntec Consultants, Atlanta, GA, 30319, United States.
  • Won J; Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749, South Korea. Electronic address: jmwon@ulsan.ac.kr.
  • Burns SE; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, United States.
Chemosphere ; 355: 141758, 2024 May.
Article em En | MEDLINE | ID: mdl-38518922
ABSTRACT
The unsaturated behavior of permeable reactive barriers (PRB) is a critical component in predicting the removal efficiency through the adsorption of contaminants. This study investigates the framework to estimate the soil water characteristic curve (SWCC) and hydraulic conductivity function (HCF) for iron oxide-coated sand (IOCS) and zeolite, which are common materials used in PRBs. A multistep outflow (MSO) experiment was performed and the results of the MSO experiment were used to optimize associated parameters in Kosugi's SWCC and HCF. In addition, three scenarios of optimization analysis were investigated to evaluate the best-fitting model for estimating SWCC and HCF. The low root mean square error (RMSE) of fitted parameters indicates the Kosugi model well described the observed suction profiles in MSO experiments. In addition, the lowest RMSE and coefficient of variation suggested the inclusion of the additional parameter ß provided the best estimation of the three materials (clean sand, IOCS, and zeolite). The physically reasonable estimation of SWCC and HCF of the three materials from the optimized parameters suggests the proposed framework is a reasonable model for the unsaturated behavior of PRBs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Compostos Férricos / Zeolitas Idioma: En Revista: Chemosphere Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Compostos Férricos / Zeolitas Idioma: En Revista: Chemosphere Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos
...