Your browser doesn't support javascript.
loading
Foldable paper-based photoelectrochemical biosensor based on etching reaction of CoOOH nanosheets-coated laser-induced PbS/CdS/graphene for sensitive detection of ampicillin.
Qiu, Zhenli; Lei, Yufen; Lin, Xintong; Zhu, Jinman; Tang, Dianping; Chen, Yiting.
Afiliação
  • Qiu Z; Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
  • Lei Y; Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
  • Lin X; Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
  • Zhu J; Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
  • Tang D; Key Laboratory of Analytical Science for Food Safety and Biology (MOE & FujianProvince), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou, 350108, China.
  • Chen Y; Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China. Electronic addre
Talanta ; 275: 126085, 2024 Aug 01.
Article em En | MEDLINE | ID: mdl-38615458
ABSTRACT
Timely and rapid detection of antibiotic residues in the environment is conducive to safeguarding human health and promoting an ecological virtuous cycle. A foldable paper-based photoelectrochemical (PEC) sensor was successfully developed for the detection of ampicillin (AMP) based on glutathione/zirconium dioxide hollow nanorods/aptamer (GSH@ZrO2 HS@apt) modified cellulose paper as a reactive zone with laser direct-writing lead sulfide/cadmium sulfide/graphene (PbS/CdS/LIG) as photoelectrode and cobalt hydroxide (CoOOH) as a photoresist material. Initially, AMP was introduced into the paper-based reaction zone as a biogate aptamer, which specifically recognized the target and then left the ZrO2 HS surface, releasing glutathione (GSH) encapsulated inside. Subsequently, the introduction of GSH into the reaction region and etching of CoOOH nanosheets to expose the PbS/CdS/LIG photosensitive material increased photocurrent. Under optimal conditions, the paper-based PEC biosensor showed a linear response to AMP in the range of 5.0 - 2 × 104 pM with a detection limit of 1.36 pM (S/N = 3). In addition, the constructed PEC sensing platform has excellent selectivity, high stability and favorable reproducibility, and can be used to assess AMP residue levels in various real water samples (milk, tap water, river water), indicating its promising application in environmental antibiotic detection.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Papel / Sulfetos / Técnicas Biossensoriais / Cobalto / Compostos de Cádmio / Técnicas Eletroquímicas / Grafite / Ampicilina / Chumbo Limite: Animals Idioma: En Revista: Talanta Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Papel / Sulfetos / Técnicas Biossensoriais / Cobalto / Compostos de Cádmio / Técnicas Eletroquímicas / Grafite / Ampicilina / Chumbo Limite: Animals Idioma: En Revista: Talanta Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...