Your browser doesn't support javascript.
loading
Analytical Gradient Using Cluster-in-Molecule RI-MP2 Method for the Geometry Optimizations of Large Systems.
Zheng, Yang; Ni, Zhigang; Wang, Yuqi; Li, Wei; Li, Shuhua.
Afiliação
  • Zheng Y; Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.
  • Ni Z; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
  • Wang Y; Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.
  • Li W; Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.
  • Li S; Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.
J Chem Theory Comput ; 20(9): 3626-3636, 2024 May 14.
Article em En | MEDLINE | ID: mdl-38626287
ABSTRACT
We present an efficient analytical energy gradient algorithm for the cluster-in-molecule resolution-of-identity second-order Møller-Plesset perturbation (CIM-RI-MP2) method based on the Lagrange multiplier method. Our algorithm independently constructs the Lagrangian formalism within each cluster, avoiding the solution of the coupled-perturbed Hartree-Fock (CPHF) equation for the whole system. Due to this feature, the computational cost of the CIM-RI-MP2 gradients is much lower than that of other local MP2 algorithms. Benchmark calculations of several molecules containing up to 312 atoms demonstrate the general applicability of our CIM-RI-MP2 gradient algorithm. The optimized structure of a 244-atom molecule using the CIM-RI-MP2 method with the cc-pVDZ basis set is in good agreement with the corresponding crystal structure. A single-point gradient calculation conducted for a molecular cage containing 972 atoms and 9612 basis functions takes 48 h on 25 nodes, utilizing a total of 600 CPU cores. The present CIM-RI-MP2 gradient program is applicable for obtaining the optimized geometries of large systems with hundreds of atoms.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Theory Comput Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Theory Comput Ano de publicação: 2024 Tipo de documento: Article
...