Your browser doesn't support javascript.
loading
Exploring a Hirudin variant from nonhematophagous leeches: Unraveling full-length sequence, alternative splicing, function, and potential as a novel anticoagulant polypeptide.
Yi, Xiaozhe; Liu, Jiali; Zang, Erhuan; Tian, Yu; Liu, Jinxin; Shi, Linchun.
Afiliação
  • Yi X; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Tradition
  • Liu J; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Tradition
  • Zang E; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Tradition
  • Tian Y; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical U
  • Liu J; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Tradition
  • Shi L; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Tradition
J Ethnopharmacol ; 330: 118257, 2024 Aug 10.
Article em En | MEDLINE | ID: mdl-38677578
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE Leeches exhibit robust anticoagulant activity, making them useful for treating cardiovascular diseases in traditional Chinese medicine. Whitmania pigra, the primary source species of leech-derived medicinal compounds in China, has been demonstrated to possess formidable anticoagulant properties. Hirudin-like peptides, recognized as potent thrombin inhibitors, are prevalent in hematophagous leeches. Considering that W. pigra is a nonhematophagic leech, the following question arises does a hirudin variant exist in this species? AIM OF THE STUDY In this study we identified the hirudin-encoding gene (WP_HV1) in the W. pigra genome. The goal of this study was to assess its anticoagulant activity and analyze the related mechanisms. MATERIALS AND

METHODS:

In this study, a hirudin-encoding gene, WP_HV1, was identified from the W. pigra genome, and its accurate coding sequence (CDS) was validated through cloning from cDNA extracted from fresh W. pigra specimens. The structure of WP_HV1 and the amino acids associated with its anticoagulant activity were determined by sequence and structural analysis and prediction of its binding energy to thrombin. E. coli was used for the expression of WP_HV1 and recombinant proteins with various structures and mutants. The anticoagulant activity of the synthesized recombinant proteins was then confirmed using thrombin time (TT).

RESULTS:

Validation of the WP_HV1 gene was accomplished, and three alternative splices were discovered. The TT of the blank sample exceeded that of the recombinant WP_HV1 sample by 1.74 times (0.05 mg/ml), indicating positive anticoagulant activity. The anticoagulant activity of WP_HV1 was found to be associated with its C-terminal tyrosine, along with the presence of 9 acidic amino acids on both the left and right sides. A significant reduction in the corresponding TT was observed for the mutated amino acids compared to those of the wild type, with decreases of 4.8, 6.6, and 3.9 s, respectively. In addition, the anticoagulant activity of WP_HV1 was enhanced and prolonged for 2.7 s when the lysine-67 residue was mutated to tryptophan.

CONCLUSION:

Only one hirudin-encoding variant was identified in W. pigra. The active amino acids associated with anticoagulation in WP_HV1 were resolved and validated, revealing a novel source for screening and developing new anticoagulant drugs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hirudinas / Processamento Alternativo / Sanguessugas / Anticoagulantes Limite: Animals Idioma: En Revista: J Ethnopharmacol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hirudinas / Processamento Alternativo / Sanguessugas / Anticoagulantes Limite: Animals Idioma: En Revista: J Ethnopharmacol Ano de publicação: 2024 Tipo de documento: Article
...