Your browser doesn't support javascript.
loading
Nematicidal activity and action mode of a methyl-accepting chemotaxis protein from Pseudomonas syringae against Caenorhabditis elegans.
Li, Jiaoqing; Dai, Haiyan; Bashir, Anum; Wang, Zhiyong; An, Yimin; Yu, Xun; Xu, Liangzheng; Li, Lin.
Afiliação
  • Li J; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Sciences, Jiaying University, Meizhou 514015, China.
  • Dai H; National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  • Bashir A; National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  • Wang Z; National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  • An Y; Pomelo Engineering Technology Center, School of Life Sciences, Jiaying University, Meizhou 514015, China.
  • Yu X; National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  • Xu L; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Sciences, Jiaying University, Meizhou 514015, China.
  • Li L; National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
Heliyon ; 10(9): e30366, 2024 May 15.
Article em En | MEDLINE | ID: mdl-38707475
ABSTRACT
The conventional phytopathogen Pseudomonas syringae reportedly possesses several virulence determinants against Caenorhabditis elegans; however, their action mechanisms remain elusive. This study reports the nematicidal activity and action receptor of a methyl-accepting chemotaxis protein (MCP03) of a wild-type P. syringae MB03 against C. elegans. Purified MCP03 exhibited nematicidal toxicity against C. elegans at a half-lethal concentration of 124.4 µg mL-1, alongside detrimental effects on the growth and brood size of C. elegans. Additionally, MCP03-treated worms exhibited severe pathological destruction of the intestine and depressed wrinkles of the cuticle. Yeast two-hybrid assays identified a subunit of COP9 signalosome, namely CSN-5, which functioned as an MCP03 action receptor. In vitro pull-down verified the binding interaction between MCP03 and CSN-5. RNA interference assays confirmed that MCP03 antagonizes CSN-5, thereby adversely affecting the brood size and cuticle integrity of C. elegans. Following MCP03 infection, the expression of genes related to reproduction, growth, and cuticle formation, such as kgb-1, unc-98, and col-117, was considerably downregulated, indicating pathological changes in MCP03-treated nematodes. Therefore, we proposed that MCP03 antagonizes CSN-5, causing lethality as well as detrimental effects on the fertility, growth, and morphogenesis of C. elegans, which can provide new insights into the signaling pathways and mechanisms underlying the nematicidal action of MCP03 toward C. elegans.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...