Your browser doesn't support javascript.
loading
Performance of a novel up-flow electrocatalytic hydrolysis acidification reactor (UEHAR) coupled with anoxic/oxic system for treating coking wastewater.
Dong, Jian; Chen, Zhaobo; Han, Fei; Hu, Dongxue; Ge, Hui; Jiang, Bei; Yan, Jitao; Zhuang, Shuya; Wang, Yifan; Cui, Shiming; Liang, Zhibo.
Afiliação
  • Dong J; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1166
  • Chen Z; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1166
  • Han F; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1166
  • Hu D; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1166
  • Ge H; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1166
  • Jiang B; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1166
  • Yan J; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1166
  • Zhuang S; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1166
  • Wang Y; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1166
  • Cui S; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1166
  • Liang Z; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1166
Water Res ; 257: 121670, 2024 Jun 15.
Article em En | MEDLINE | ID: mdl-38723347
ABSTRACT
In this study, the performance of a novel up-flow electrocatalytic hydrolytic acidification reactor (UEHAR) and anoxic/oxic (ANO2/O2) combined system (S2) was compared with that of a traditional anaerobic/anoxic/oxic (ANA/ANO1/O1) system (S1) for treating coking wastewater at different hydraulic retention time (HRT). The effluent non-compliance rates of chemical oxygen demand (COD) of S2 were 45 %, 35 %, 25 % and 55 % lower than S1 with HRT of 94, 76, 65 and 54 h. The removal efficiency of benzene, toluene, ethylbenzene and xylene (BTEX) in S2 was 10.6 ± 2.4 % higher than that in S1. The effluent concentration of volatile phenolic compounds (VPs) in S2 was lower than 0.3 mg/L. The dehydrogenase activity (DHA) and adenosine triphosphate (ATP) of O2 were enhanced by 67.2 ± 26.3 % and 40.6 ± 14.2 % compared with O1, respectively. Moreover, COD was used to reflect the mineralization index of organic matter, and the positive correlation between COD removal rate and microbial activity, VPs, and BTEX was determined. These results indicated that S2 had extraordinary microbial activity, stable pollutant removal ability, and transcendental effluent compliance rate.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eliminação de Resíduos Líquidos / Coque / Reatores Biológicos / Águas Residuárias Idioma: En Revista: Water Res Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eliminação de Resíduos Líquidos / Coque / Reatores Biológicos / Águas Residuárias Idioma: En Revista: Water Res Ano de publicação: 2024 Tipo de documento: Article
...