Your browser doesn't support javascript.
loading
Cardiac function in a large animal model of myocardial infarction at 7 T: deep learning based automatic segmentation increases reproducibility.
Kollmann, Alena; Lohr, David; Ankenbrand, Markus J; Bille, Maya; Terekhov, Maxim; Hock, Michael; Elabyad, Ibrahim; Baltes, Steffen; Reiter, Theresa; Schnitter, Florian; Bauer, Wolfgang R; Hofmann, Ulrich; Schreiber, Laura M.
Afiliação
  • Kollmann A; Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany.
  • Lohr D; Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany. Schreiber_L@ukw.de.
  • Ankenbrand MJ; Faculty of Biology, Center for Computational and Theoretical Biology (CCTB), University of Würzburg, Würzburg, Germany.
  • Bille M; Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany.
  • Terekhov M; Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany.
  • Hock M; Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany.
  • Elabyad I; Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany.
  • Baltes S; Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany.
  • Reiter T; Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany.
  • Schnitter F; Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.
  • Bauer WR; Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.
  • Hofmann U; Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.
  • Schreiber LM; Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.
Sci Rep ; 14(1): 11009, 2024 05 14.
Article em En | MEDLINE | ID: mdl-38744988
ABSTRACT
Cardiac magnetic resonance (CMR) imaging allows precise non-invasive quantification of cardiac function. It requires reliable image segmentation for myocardial tissue. Clinically used software usually offers automatic approaches for this step. These are, however, designed for segmentation of human images obtained at clinical field strengths. They reach their limits when applied to preclinical data and ultrahigh field strength (such as CMR of pigs at 7 T). In our study, eleven animals (seven with myocardial infarction) underwent four CMR scans each. Short-axis cine stacks were acquired and used for functional cardiac analysis. End-systolic and end-diastolic images were labelled manually by two observers and inter- and intra-observer variability were assessed. Aiming to make the functional analysis faster and more reproducible, an established deep learning (DL) model for myocardial segmentation in humans was re-trained using our preclinical 7 T data (n = 772 images and labels). We then tested the model on n = 288 images. Excellent agreement in parameters of cardiac function was found between manual and DL segmentation For ejection fraction (EF) we achieved a Pearson's r of 0.95, an Intraclass correlation coefficient (ICC) of 0.97, and a Coefficient of variability (CoV) of 6.6%. Dice scores were 0.88 for the left ventricle and 0.84 for the myocardium.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Animais de Doenças / Aprendizado Profundo / Infarto do Miocárdio Limite: Animals / Humans Idioma: En Revista: Sci Rep Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Animais de Doenças / Aprendizado Profundo / Infarto do Miocárdio Limite: Animals / Humans Idioma: En Revista: Sci Rep Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha
...