Cardiac function in a large animal model of myocardial infarction at 7 T: deep learning based automatic segmentation increases reproducibility.
Sci Rep
; 14(1): 11009, 2024 05 14.
Article
em En
| MEDLINE
| ID: mdl-38744988
ABSTRACT
Cardiac magnetic resonance (CMR) imaging allows precise non-invasive quantification of cardiac function. It requires reliable image segmentation for myocardial tissue. Clinically used software usually offers automatic approaches for this step. These are, however, designed for segmentation of human images obtained at clinical field strengths. They reach their limits when applied to preclinical data and ultrahigh field strength (such as CMR of pigs at 7 T). In our study, eleven animals (seven with myocardial infarction) underwent four CMR scans each. Short-axis cine stacks were acquired and used for functional cardiac analysis. End-systolic and end-diastolic images were labelled manually by two observers and inter- and intra-observer variability were assessed. Aiming to make the functional analysis faster and more reproducible, an established deep learning (DL) model for myocardial segmentation in humans was re-trained using our preclinical 7 T data (n = 772 images and labels). We then tested the model on n = 288 images. Excellent agreement in parameters of cardiac function was found between manual and DL segmentation For ejection fraction (EF) we achieved a Pearson's r of 0.95, an Intraclass correlation coefficient (ICC) of 0.97, and a Coefficient of variability (CoV) of 6.6%. Dice scores were 0.88 for the left ventricle and 0.84 for the myocardium.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Modelos Animais de Doenças
/
Aprendizado Profundo
/
Infarto do Miocárdio
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Sci Rep
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Alemanha